Autonomous Vehicle Simulation Support in Chrono
Connected Autonomous Vehicle Emulator

- Connected Autonomous Vehicle Emulator (CAVE)
 - Connected – simulated connectivity, V2V
 - Autonomous – Chrono sensors
 - Vehicle – Chrono vehicle support
 - Emulator – virtual world support

- Chrono::CAVE
Server and Client

- Distributed Simulation
 - Server in Madison
 - Clients anywhere in world

- Server does not handle any physics

- Server passes agent and world data to Clients

- Clients pass agent data to Server
Server and Client

• Heartbeat
 • Agents must be able to reach next “real-world time” marker within a ΔT amount of computational time
 • “real-world time” markers are δt apart
 • ΔT called heartbeat
 • Fast agents sleep

• Interactive time for human agents
 • Soft real time

• Agents to play in Server
 • Autonomous vehicles
 • Avatar vehicles
 • Avatar pedestrians
 • Bicyclists
Simulating Connectivity in Chrono

- Simulated Connectivity
 - Vehicles send data directly to nearby agents
 - V2V communication

- Draws on a *Dedicated Short Range Communication* (DSRC) protocol
Sensor Support in Chrono

• Need to be able to simulate sensing

 • LiDAR
 • Sensor implemented without noise
 • Uses collision detection to determine ray length
 • GPS
 • Barebones sensor implemented
 • IMU
 • Barebones sensor implemented
 • Camera
 • Not currently supported, but next in line
 • Dependent on render engine
/In simulation setup
std::shared_ptr<ChRaySensor> lidar = std::make_shared<ChRaySensor>(
 //parent body, update rate, visualize
 my_hmmwv.GetChassis()->GetBody(), 30, true);

lidar->Initialize(chrono::ChCoordsys<double>(
 //offset position
 chrono::ChVector<double>({2.3, 0, 0}),
 //offset orientation
 chrono::ChQuaternion<double>(Q_from_NasaAngles({0, 0, 0}))),
 //samples about y, samples about z, y min/max angle,
 //z min/max angle, min dist, max dist
 1, 100, 0, 0, -1.5, 1.5, .2, 25);

//During simulation loop
lidar->Update();

//To Get Data
lidar->Ranges(); //returns vector containing distance for each ray

Sensor Construction (LiDAR)
Virtual World

• Madison mesh in Chrono from Infraworks/Open Street Maps

• Future Virtual World
 • Based on physical world
 • Buildings, trees, terrain, signs, etc.
 • Environmental effects
 • Rain, snow, ice, fog, etc.
CAVE Demonstration
Future Work

• Server
 • Heartbeat to mandate consistent simulation progression
 • Scaling to allow multi-agent connectivity

• Sensors
 • Expanded sensor capabilities as a module for feedback in Chrono
 • Camera
 • Physically realistic noise models

• Virtual World
 • Physically realistic virtual world
 • Chunk loading management in Chrono
 • Environmental effects