“Introduction to Multi-physics Simulation with Chrono”
Tutorial Structure

(1) Monday 1 PM – 5 PM (January 9):
- Overview of the course
- Overview of Chrono
 o Philosophy of Chrono
 • Open source, API driven, Python interface
 • Webpage, information sources, forum
 • Build/test process
 o Chrono foundation modules
 o Supported physics: rigid body dynamics, flexible body dynamics, fluid-solid interaction
- Overview of key C++ features needed to work with Chrono
- Fundamentals of working in GitHub
 o Forking, pull requests, bug/feature requests
- CMake: basic concepts
- Hands-on
 o Getting started with Chrono (configuration, build, running demos)

(2) Tuesday, 8:30 – 12 noon (January 10):
- Theoretical aspects related to the dynamics of systems of rigid bodies
 o Reference frames
 o Generalized coordinates
 o Euler parameters and angular velocities
 o Principle of virtual work
 o Constrained equations of motion
- Modeling MBS in Chrono
 o Rigid bodies and shaft elements
 o Joints
 o Force elements (springs, actuators, motion functions)
 o Validation studies for basic modeling elements
- Visualization
 o Run-time with Irrlicht
 o Run-time with OpenGL
 o Off-line rendering with POVRay
 o Other post-processing support (Gnuplot)
- Hands-on
 o Dynamics simulation of a simple slider crank in Chrono

(3) Tuesday, 1 PM – 5 PM (January 10):
- Handling Frictional Contact in Chrono
 o The complementarity approach, DVI problems
 o The penalty approach, constitutive material laws
- Collision detection in Chrono
 o Contact shapes
 o Geometric information (envelope, margin, radius of curvature)
 o Algorithms: broadphase + narrowphase
 o Bullet and GJK
 o Custom collision detection and contact processing
- Solution methods
 o Implicit integration (HHT)
- Semi-implicit Euler for (DVI) frictional contact problems
 - Hands-on
 - Handling of friction and contact in Chrono: slider crank mechanism, revisited

(4) **Wednesday, 8:30 – 12 noon (January 11)**
- Aspects of parallel computing relevant in Chrono
 - GPU
 - Multi-core
 - Distributed memory
- Chrono::Parallel and granular dynamics
 - Philosophy of Chrono::Parallel; modeling aspects
 - Parallel collision detection
 - Sampling methods for volume filling
 - Creation of models containing granular material
 - Validation studies
- Python interface for Chrono
 - Demo
- Chrono Interface to SolidWorks
 - Demo
- Support for mechatronics in Chrono
 - Support for modeling robotic systems
 - Bio-inspired robot demo

(5) **Wednesday, 1 PM – 5 PM (January 11)**
- Chrono::FEA theoretical concepts
 - Overview of ANCF for nonlinear finite element analysis
 - Overview of co-rotational implementation for linear finite element analysis
 - Contact with FEA meshes
 - Point cloud vs. contact surfaces
 - Mesh-rigid and mesh-mesh
 - Overview of validation studies
- Hands on, Chrono::FEA
 - Example with beam elements
 - Constraints between FEA mesh and rigid bodies
 - Enabling contact for FEA meshes
 - Specifying loads
 - Demo w/ ANCF shell

(6) **Thursday, 8:30 – 12 noon (January 12)**
- Chrono::Vehicle Tutorial
 - Vehicle types and topologies
 - Templated-based design, JSON support
 - Terrain models (Rigid, Soft Contact Model-SCM, FEA)
 - Powertrain models
 - Driver models
 - Chrono::Vehicle visualization
- Hands-on
 - Description of various demos and test programs
 - Extracting output, off-line visualization
(7) Thursday, 1 PM – 5 PM (January 12)
- Chrono::Vehicle Wheeled Vehicles
 o Subsystems
 ▪ Templates and JSON specification
 o Wheeled vehicle demos
- Chrono::Vehicle Tracked Vehicles
 o Subsystems
 ▪ Track assembly
 ▪ Templates and JSON specification
 o Sprocket-track contact
 ▪ Custom collision callbacks
 o Tracked vehicle demos
- Hands-on
 o Specifying a vehicle model through JSON files
 o Creating/modifying JSON specification files

(8) Friday, 8:30 – 12 noon (January 13)
- Chrono::Vehicle Interoperability
 o Chrono::Vehicle + Chrono::Parallel examples
 o Co-simulation support using MPI
 o Demo
- Chrono support for MATLAB/Simulink
 o Demo
- Support for fluid dynamics in Chrono
 o Overview of Smoothed Particle Hydrodynamics
 o Support for Fluid-Solid Interaction support in Chrono
 o Demo
- Features under development
 o Support for sensors
- Feedback, course evaluation, wrap up