
Advanced Computing
for Engineering Applications

���������	
���
���
����������

Dan Negrut

Simulation-Based Engineering Lab
Wisconsin Applied Computing Center

Department of Mechanical Engineering
Department of Electrical and Computer Engineering

University of Wisconsin-Madison

Milano
18-23 November

2013

� Old: Power is free, Transistors expensive
� New: Power expensive, Transistors free

(Can put more on chip than can afford to turn on)

� Old: Multiplies are slow, Memory access is fast
� New: Memory slow, multiplies fast [“Memory wall”]

(400-600 cycles for DRAM memory access, 1 clock for FMA)

� Old : Increasing Instruction Level Parallelism via compilers, innovation (Out-of-
order, speculation, VLIW, …)

� New: “ILP wall” diminishing returns on more ILP

� New: Power Wall + Memory Wall + ILP Wall = Brick Wall
� Old: Uniprocessor performance 2X / 1.5 yrs
� New: Uniprocessor performance only 2X / 5 yrs?

Conventional Wisdom
in Computer Architecture

2

Summarizing It All…
� The sequential execution model is losing steam
� The bright spot: number of transistors per unit area going up and up

3

� OK, now what?

4

Moore’s Law

� 1965 paper: Doubling of the number of transistors on integrated
circuits every two years
� Moore himself wrote only about the density of components (or

transistors) at minimum cost

� Increase in transistor count is also a rough measure of computer
processing performance

http://news.cnet.com/Images-Moores-Law-turns-40/2009-1041_3-5649019.html

5

Moore’s Law (1965)

� “The complexity for minimum component costs has increased at a
rate of roughly a factor of two per year (see graph on next page).
Certainly over the short term this rate can be expected to continue, if
not to increase. Over the longer term, the rate of increase is a bit
more uncertain, although there is no reason to believe it will not
remain nearly constant for at least 10 years. That means by 1975,
the number of components per integrated circuit for minimum cost
will be 65,000. I believe that such a large circuit can be built on a
single wafer.”

“Cramming more components onto integrated circuits” by Gordon E.
Moore, Electronics, Volume 38, Number 8, April 19, 1965

6

Intel Roadmap

� 2013 – 22 nm
� 2015 – 14 nm
� 2017 – 10 nm
� 2019 – 7 nm
� 2021 – 5 nm
� 2023 – ??? (your turn, maybe carbon nanotubes)

7

Many-core array
• CMP with 10s-100s low

power cores
• Scalar cores
• Capable of TFLOPS+
• Full System-on-Chip
• Servers, workstations,

embedded…

Dual core
• Symmetric multithreading

Multi-core array
• CMP with ~10 cores

Large, Scalar cores for
high single-thread
performance

Scalar plus many core for
highly threaded workloads

Intel’s Vision:
Evolutionary Configurable Architecture

Micro2015: Evolving Processor Architecture, Intel® Developer Forum, March 2005

CMP = “chip multi-processor”
Presentation Paul Petersen,
Sr. Principal Engineer, Intel

8

Parallel Computing:
Here to Stay for This Decade

� More transistors = More computational units

� November 2013:
� Intel Xeon w/ 12 cores – 3 billion transistors

� Projecting ahead:
� 2015: 24 cores
� 2017: about 50 cores
� 2019: about 100 cores
� 2021: about 200 cores

11/19/2013

Old School

� Increasing clock frequency is
primary method of
performance improvement

� Processors parallelism is
primary method of performance
improvement

� Don’t bother parallelizing an
application, just wait and run on
much faster sequential computer

� Nobody is building one processor
per chip. This marks the end of
the La-Z-Boy programming era

� Less than linear scaling for a
multiprocessor is failure

� Given the switch to parallel hardware,
even sub-linear speedups are
beneficial as long as you beat the
sequential

New School

���������	
�����	
������������������
���

10

Moving Into Parallelism…

11

From Simple to Complex:
Part 1

� The von Neumann architecture

12

From Simple to Complex:
Part 2

� The architecture of the early to mid 1990s
� Pipelining was king

13

From Simple to Complex:
Part 3

� The architecture of late 1990s, early 2000s
� ILP galore

14

Two Examples of Parallel HW

� Intel Haswell
� Multicore architecture

� NVIDIA Fermi
� Large number of scalar processors (“shaders”)

15

Intel Haswell

� June 2013
� 22 nm technology
� 1.4 billion transistors
� 4 cores, hyperthreaded
� Integrated GPU
� System-on-a-chip design

16

The Fermi Architecture

� Late 2009, early 2010
� 40 nm technology
� Three billion transistors
� 512 Scalar Processors (SP, “shaders”)
� L1 cache
� L2 cache
� 6 GB of global memory
� Operates at low clock rate
� High bandwidth (close to

200 GB/s)

17

Fermi: 30,000 Feet Perspective

� Lots of ALU (green), not much of CU
� Explains why GPUs are fast for high arithmetic intensity applications
� Arithmetic intensity: high when many operations performed per word of

memory

18

“Big Iron” Parallel Computing

19

Euler: CPU/GPU Heterogeneous Cluster
~ Hardware Configuration ~

20

Euler, in reality…

21

Overview of Large Multiprocessor
Hardware Configurations (“Big Iron”)

Courtesy of Elsevier, Computer Architecture, Hennessey and Patterson, fourth edition

Euler

22

Some Nomenclature…

� Shared addressed space: when you invoke address “0x0043fc6f” on one
machine and then invoke “0x0043fc6f” on a different machine they actually
point to the same global memory space
� Issues: memory coherence

� Fix: software-based or hardware-based

� Distributed addressed space: the opposite of the above

� Symmetric Multiprocessor (SMP): you have one machine that shares amongst
all its processing units a certain amount of memory (same address space)
� Mechanisms should be in place to prevent data hazards (RAW, WAR, WAW). Brings back the

issue of memory coherence

� Distributed shared memory (DSM):
� Also referred to as distributed global address space (DGAS)
� Although physically memory is distributed, it shows as one uniform memory
� Memory latency is highly unpredictable

23

Example

� Distributed-memory multiprocessor architecture (Euler, for instance)

Courtesy of Elsevier, Computer Architecture, Hennessey and Patterson, fourth edition
24

Comments, distributed-memory
multiprocessor architecture

� Basic architecture consists of nodes containing a processor, some memory, typically some
I/O, and an interface to an interconnection network that connects all the nodes

� Individual nodes may contain a small number of processors, which may be interconnected
by a small bus or a different interconnection technology, which is less scalable than the
global interconnection network

� Popular interconnection network: Mellanox and Qlogic InfiniBand
� Bandwidth range: 1 through 50 Gb/sec
� Latency: in the microsecond range (approx. 1E-6 seconds)
� Requires special network cards: HCA – “Host Channel Adaptor”

� InfiniBand offers point-to-point bidirectional serial links intended for the connection of
processors with high-speed peripherals such as disks.
� Basically, a protocol and implementation for communicating data very fast
� It supports several signaling rates and, as with PCI Express, links can be bonded together for additional throughput
� Similar technologies: Fibre Channel, PCI Express, Serial ATA, etc.
� Euler: uses 4X Infiniband QDR for 40 Gb/sec bandwidth 25

Example, SMP
[This is not “Big Iron”, rather a desktop nowadays]

� Shared-Memory Multiprocessor Architecture

Courtesy of Elsevier, Computer Architecture, Hennessey and Patterson, fourth edition

Usually SRAM

Usually DRAM

26

Comments, SMP Architecture

� Multiple processor-cache subsystems share the same physical off-chip memory

� Typically connected to this off-chip memory by one or more buses or a switch

� Key architectural property: uniform memory access (UMA) time to all of memory
from all the processors
� This is why it’s called symmetric

27

Examples…

� Shared-Memory
� Intel Xeon Phi available as of 2012

� Packs 61 cores, which are on the basic (unsophisticated) side

� AMD Opteron 6200 Series (16 cores: Opteron 6276) – Bulldozer architecture

� Sun Niagara

� Distributed-Memory
� IBM BlueGene/L

� Cell (see http://users.ece.utexas.edu/~adnan/vlsi-07/hofstee-cell.ppt)

28

Big Iron: Where Are We Today?
[Info lifted from Top500 website: http://www.top500.org/]

29

Big Iron: Where Are We Today?
[Cntd.]

� Abbreviations/Nomenclature
� MPP – Massively Parallel Processing
� Constellation – subclass of cluster architecture envisioned to capitalize on data locality
� MIPS – “Microprocessor without Interlocked Pipeline Stages”, a chip design of the MIPS Computer Systems

of Sunnyvale, California
� SPARC – “Scalable Processor Architecture” is a RISC instruction set architecture developed by Sun

Microsystems (now Oracle) and introduced in mid-1987
� Alpha - a 64-bit reduced instruction set computer (RISC) instruction set architecture developed by DEC

(Digital Equipment Corporation was sold to Compaq, which was sold to HP) – adopted by Chinese chip
manufacturer (see primer)

30

Short Digression [second take]:

What is a MPP?

� A very large-scale comp. system with commodity
processing nodes interconnected with a high-speed low-
latency interconnect

� Memories are physically distributed
� Nodes often run a microkernel
� Contains one host monolithic OS
� There are overlaps among MPPs, clusters, and SMPs

[Youngdae Kim]®

31

Big Iron: Where Are We Today?
[Cntd.]

� How is the speed measured to put together the Top500?
� Basically reports how fast you can solve a dense linear system

32

Flynn’s Taxonomy of Architectures

� SISD - Single Instruction/Single Data

� SIMD - Single Instruction/Multiple Data

� MISD - Multiple Instruction/Single Data

� MIMD - Multiple Instruction/Multiple Data

� There are several ways to classify architectures (we just saw on
based on how memory is organized/accessed)

� Below, classified based on how instructions are executed in relation
to data

33

Single Instruction/Single Data
Architectures

��
	��������������	��������	��������
��� �	��!"��
���������	
�����
������������������������

PU – Processing Unit

34

Flavors of SISD

����	�
������

35

Single Instruction/Multiple Data
Architectures

"	� ����	��������#�
�����$������	
 ��������
$
���������� ����������%��&'�'(�)"��

���������	
�����
������������������������

36

Single Instruction/Multiple Data
[Cntd.]

� Each core runs the same set of instructions on different data
� Examples:

� Graphics Processing Unit (GPU): processes pixels of an image in parallel
� CRAY’s vector processor, see image below

���������	
��� ����!���
��"�#�
	��������

37

SISD versus SIMD

�	�������� �$����	���	�*'����	 ���� �
	�����������
���
+����	���	���� �$$
�� ������ �$��� ����������� �
	� ,-

���������	
����	����
$��
���%��
��	�����	��
��

38

Multiple Instruction/Single Data

����
���
��������.�	�������/� �$$�	 �����$���$����� ���,

���������	
�����
������������������������

39

Multiple Instruction/Multiple Data

As of 2006, all the top 10 and most of the TOP500
supercomputers were based on a MIMD architecture

���������	
�����
������������������������

40

Multiple Instruction/Multiple Data

� The sky is the limit: each PU is free to do as it pleases

� Can be of either shared memory or distributed memory categories

����	�
������

41

Amdahl's Law

“A fairly obvious conclusion which can be drawn at this point is that the effort
expended on achieving high parallel processing rates is wasted unless it is
accompanied by achievements in sequential processing rates of very nearly the same
magnitude”

Excerpt from “Validity of the single processor approach to achieving large
scale computing capabilities,” by Gene M. Amdahl, in Proceedings of the
“AFIPS Spring Joint Computer Conference,” pp. 483, 1967

42

Amdahl’s Law
[Cntd.]

� Sometimes called the law of diminishing returns

� In the context of parallel computing used to illustrate how going parallel
with a part of your code is going to lead to overall speedups

� The art is to find for the same problem an algorithm that has a large rp
� Sometimes requires a completely different angle of approach for a solution

� Nomenclature
� Algorithms for which rp=1 are called “embarrassingly parallel”

43

Example: Amdahl's Law

� Suppose that a program spends 60% of its time in I/O operations, pre and post-processing
� The rest of 40% is spent on computation, most of which can be parallelized
� Assume that you buy a multicore chip and can throw 6 parallel threads at this problem.

What is the maximum amount of speedup that you can expect given this investment?
� Asymptotically, what is the maximum speedup that you can ever hope for?

44

A Word on “Scaling”
[important to understand]

� Algorithmic Scaling of a solution algorithm
� You only have a mathematical solution algorithm at this point
� Refers to how the effort required by the solution algorithm scales with the size of the problem
� Examples:

� Naïve implementation of the N-body problem scales like O(N2), where N is the number of bodies
� Sophisticated algorithms scale like O(N� logN)
� Gauss elimination scales like the cube of the number of unknowns in your linear system

� Implementation Scaling on a certain architecture
� Intrinsic Scaling : how the wall-clock run time changes with an increase in the size of the problem
� Strong Scaling : how the wall-clock run time changes when you increase the processing resources
� Weak Scaling : how the wall-clock run time changes when you increase the problem size but also the

processing resources in a way that basically keeps the ration of problem size/processor constant

� A thing you should worry about: is the Intrinsic Scaling similar to the Algorithmic Scaling?
� If Intrinsic Scaling significantly worse than Algorithmic Scaling:

� You might have an algorithm that thrashes the memory badly, or
� You might have a sloppy implementation of the algorithm 45

End: Intro Part

Beginning: GPU Computing,
CUDA Programming Model

46

Layout of Typical Hardware Architecture CPU
(the “host”)

GPU w/
local DRAM
(the “device”)

01Wikipedia

Parallel Computing on a GPU

� NVIDIA GPU Computing Architecture
� Via a separate HW interface
� In laptops, desktops, workstations, servers

� Kepler K20X delivers 1.515 Tflops in double
precision

� Multithreaded SIMT model uses application
data parallelism and thread parallelism

� Programmable in C with CUDA tools
� “Extended C”

Tesla C2050

Kepler K20X

02

Bandwidth in a CPU-GPU System

[Robert Strzodka, Max Plank Institute, Germany]®
03

1-8 GB/s

GPU
NOTE: The width
of the black lines is
proportional to the
bandwidth.

GPU vs. CPU – Memory Bandwidth
[GB/sec]

50

0

20

40

60

80

100

120

140

160

2003 2004 2005 2006 2007 2008 2009 2010

Tesla 8-series

Tesla 10-series

Nehalem
3 GHz

Westmere
3 GHz

Tesla 20-series

G
B

/S
ec

CPU2GPU Transfer Issues:
PCI-Express Latency

B. Holden, “Latency comparison between HyperTransportTM and PCI-expressTM in communications systems,”
in HyperTransportTM Consortium, Nov. 2006 4�

� Relevant since host-device communication done over PCI-Express bus

Comparison:
Latency, DRAM Memory Access

52
Courtesy of Elsevier, Computer Architecture, Hennessey and Patterson, fourth edition

0

200

400

600

800

1000

1200

2003 2004 2005 2006 2007 2008 2009 2010

Tesla 8-series

Tesla 10-series

Nehalem
3 GHz

Tesla 20-series

Westmere
3 GHz

Tesla 20-series

Tesla 10-series

CPU vs. GPU – Flop Rate
(GFlops)

53

Single Precision
Double Precision

G
F

lo
p/

S
ec

54

More Up-to-Date, DP Figures…

Source: Revolutionizing High Performance Computing / Nvidia Tesla

What is the GPU so Fast?

� The GPU is specialized for compute-intensive, highly data parallel computation
(owing to its graphics rendering origin)

� More transistors can be devoted to data processing rather than data
caching and control flow

� Where are GPUs good: high arithmetic intensity (the ratio between
arithmetic operations and memory operations)

� The fast-growing video game industry exerts strong economic pressure that
forces constant innovation

DRAM

Cache

ALU
Control

ALU

ALU

ALU

DRAM

CPU GPU

44

GPU – NVIDIA
Tesla C2050

CPU – Intel core I7 975 Extreme

Processing Cores 448 4 (8 threads)

Memory 3 GB - 32 KB L1 cache / core
- 256 KB L2 (I&D)cache / core
- 8 MB L3 (I&D) shared by all cores

Clock speed 1.15 GHz 3.20 GHz

Memory bandwidth 140 GB/s 25.6 GB/s

Floating point
operations/s

515 x 10 9

Double Precision
70 x 10 9

Double Precision

Key Parameters
GPU, CPU

56

When Are GPUs Good?

� Ideally suited for data-parallel computing (SIMD)

� Moreover, you want to have high arithmetic intensity
� Arithmetic intensity: ratio or arithmetic operations to memory operations

� Example: quick back-of-the-envelope computation to illustrate the
crunching number power of a modern GPU
� Suppose it takes 4 microseconds (4E-6) to launch a kernel (more about this later…)
� Suppose you own a 1 Tflops (1E12) Fermi-type GPU and use to add (in 4 cycles) floats
� Then, you have to carry out about 1 million floating point ops on the GPU to break even

with the amount of time it took you to invoke execution on the GPU in the first place

57

When Are GPUs Good?
[Cntd.]

� Another quick way to look at it:
� Your 1 Tflops GPU needs a lot of data to keep busy and reach that peak rate
� For instance: assume that you want to add different numbers and reach 1 Tflops: 1E12

ops/second…
� You need to feed 2E12 operands per second…
� If each number is stored using 4 bytes (float), then you need to fetch 2E12*4 bytes in a

second. This is 8E12 B/s, which is 8 TB/s…
� The memory bandwidth on the GPU is in the neighborhood of 0.15 TB/s, about 50

times less than what you need (and you haven’t taken into account that you probably
want to send back the outcome of the operation that you carry out)

� Here’s a set of rules that you need to keep in mind before going further…
� GET THE DATEA ON THE GPU AND KEEP IT THERE
� GIVE THE GPU ENOUGH WORK TO DO
� FOCUS ON DATA REUSE WITHIN THE GPU TO AVOID MEMORY BANDWIDTH

LIMITATIONS
58

Rules suggested by Rob Farber

GPU Computing – The Basic Idea

� GPU, going beyond graphics:

� The GPU is connected to the CPU by a reasonable fast bus (8 GB/s is
typical today)

� The idea is to use the GPU as a co-processor
� Farm out big parallel jobs to the GPU
� CPU stays busy with the control of the execution and “corner” tasks
� You have to copy data down into the GPU, and then fetch results back

� Ok if this data transfer is overshadowed by the number crunching done using that
data (remember Amdahl’s law…)

43

CUDA: Making the GPU Tick…

� “Compute Unified Device Architecture” – freely distributed by NVIDIA

� When introduced it eliminated the constraints associated with GPGPU

� It enables a general purpose programming model
� User kicks off batches of threads on the GPU to execute a function (kernel)

� Targeted software stack
� Scientific computing oriented drivers, language, and tools

� Driver for loading computation programs into GPU
� Standalone Driver - Optimized for computation
� Interface designed for compute, graphics free, API
� Explicit GPU memory management

5�

CUDA Programming Model:
GPU as a Highly Multithreaded Coprocessor

� The GPU is viewed as a compute device that:
� Is a co-processor to the CPU or host
� Has its own DRAM (device memory, or global memory in CUDA

parlance)
� Runs many threads in parallel

� Data-parallel portions of an application run on the device as
kernels which are executed in parallel by many threads

� Differences between GPU and CPU threads
� GPU threads are extremely lightweight

� Very little creation overhead
� GPU needs 1000s of threads for full efficiency

� Multi-core CPU needs only a few heavy ones
5�HK-UIUC

Fermi: Quick Facts

� Lots of ALU (green), not much of CU
� Explains why GPUs are fast for high arithmetic intensity applications
� Arithmetic intensity: high when many operations performed per word of

memory

62

The Fermi Architecture

� Late 2009, early 2010
� 40 nm technology
� Three billion transistors
� 512 Scalar Processors (SP, “shaders”)
� 64 KB L1 cache
� 768 KB L2 uniform cache (shared by

all SMs)
� Up to 6 GB of global memory
� Operates at several clock rates

� Memory
� Scheduler
� Shader (SP)

� High memory bandwidth
� Close to 200 GB/s

63

GPU Processor Terminology

� GPU is a SIMD device ® it works on “streams” of data
� Each “GPU thread” executes one general instruction on the stream of

data that it is assigned to handle
� The NVIDIA calls this model SIMT (single instruction multiple thread)

� The number crunching power comes from a vertical hierarchy:
� A collection of Streaming Multiprocessors (SMs)
� Each SM has a set of 32 Scalar Processors (SPs)

� The quantum of scalability is the SM
� The more $ you pay, the more SMs you get inside your GPU
� Fermi can have up to 16 SMs on one GPU card

50

Compute Capability [of a Device]
vs.

CUDA Version

� “Compute Capability of a Device” refers to hardware
� Defined by a major revision number and a minor revision number

� Example:
� Tesla C1060 is compute capability 1.3
� Tesla C2050 is compute capability 2.0
� Fermi architecture is capability 2 (on Euler now)
� Kepler architecture is capability 3 (the highest, on Euler now)
� The minor revision number indicates incremental changes within an architecture class

� A higher compute capability indicates an more able piece of hardware

� The “CUDA Version” indicates what version of the software you are
using to run on the hardware
� Right now, the most recent version of CUDA is 5.5

� In a perfect world
� You would run the most recent CUDA (version 5.5) software release
� You would use the most recent architecture (compute capability 3.0)

54

Compatibility Issues

� The basic rule: the CUDA Driver API is backward, but not
forward compatible
� Makes sense, the functionality in later versions increased, was not

there in previous versions

66

NVIDIA CUDA Devices
� CUDA-Enabled Devices with Compute Capability, Number

of Multiprocessors, and Number of CUDA Cores

51

Card Compute Capability Number of Multiprocessors Numb er of CUDA Cores

GTX 690 3.0 2x8 2x1536
GTX 680 3.0 8 1536
GTX 670 2.1 7 1344
GTX 590 2.1 2x16 2x512
GTX 560TI 2.1 8 384
GTX 460 2.1 7 336
GTX 470M 2.1 6 288
GTS 450, GTX
460M

2.1 4 192

GT 445M 2.1 3 144
GT 435M, GT 425M,
GT 420M

2.1 2 96

GT 415M 2.1 1 48
GTX 490 2.0 2x15 2x480
GTX 580 2.0 16 512
GTX 570, GTX 480 2.0 15 480
GTX 470 2.0 14 448
GTX 465, GTX
480M

2.0 11 352

GTX 295 1.3 2x30 2x240
GTX 285, GTX 280,
GTX 275

1.3 30 240

GTX 260 1.3 24 192
9800 GX2 1.1 2x16 2x128
GTS 250, GTS 150,
9800 GTX, 9800
GTX+, 8800 GTS
512, GTX 285M,
GTX 280M

1.1 16 128

8800 Ultra, 8800
GTX

1.0 16 128

9800 GT, 8800 GT 1.1 14 112

The CUDA Execution Model

GPU Computing – The Basic Idea

� The GPU is linked to the CPU by a reasonably fast connection

� The idea is to use the GPU as a co-processor

� Farm out big parallel tasks to the GPU

� Keep the CPU busy with the control of the execution and “corner” tasks

53

The CUDA Way: Extended C

� Declaration specifications:
� global, device, shared,

local, constant

� Keywords
� threadIdx, blockIdx

� Intrinsics
� __syncthreads

� Runtime API
� Functions for memory and

execution management

� Kernel launch

1�HK-UIUC

���������� ��	
� ������
����

����	�
��� �	�� �	��	����� ��	
� ���
������

����
����� ��	
� ����	�
���
����

����	�
 ����
���� ���� ���
��
����

����

���!������
�� ����
����

��
��
"�� ����#���
$

%%�&��	�
���'()����	�!
�	�� ��!��
�� ��#�
�
��	���!����

%%�*++���	�,�-�*+�����
���.�����	�,
�	��	���///*++-�*+000���!��
����

Example: Hello World!

� Standard C that runs on the host

� NVIDIA compiler (nvcc) can be
used to compile programs with no
device code

71

��� ����� ���	
��

������ �����������	����
�
������ ��

�

Output, on Euler:

$ nvcc hello_world.cu
$ a.out
Hello World!
$

Note the “cu” suffix

[NVIDIA]�

Compiling with ���� for CUDA

� Source files with CUDA language extensions must be compiled with nvcc
� You spot such a file by its .cu or .cuh suffixes

� Example:
>> nvcc -arch=sm_20 foo.cu

� nvcc is actually a compile driver
� Works by invoking all the necessary tools and compilers like g++, cl, ...

� nvcc can output:
� C code

� Must then be compiled with the rest of the application using another tool
� ptx code (CUDA’s assembly language, device independent)
� Or directly object code (cubin)

1

� Two new syntactic elements…

73

���������� ���	 ��������� ���	
��
�

��� ����� ���	
��
�������� !"!###�
�

������ �����������	����
�
������ ��

�

Hello World! with Device Code

[NVIDIA]�

Hello World! with Device Code

� CUDA C/C++ keyword ���������� indicates a function that:
� Runs on the device
� Is called from host code
� People refer to it as being a “kernel”

� nvcc separates source code into host and device components
� Device functions, e.g. ���������
 , processed by NVIDIA compiler
� Host functions, e.g. �����
 , processed by standard host compiler

� gcc, cl.exe

���������� ���	 ��������� ���	
��
�

[NVIDIA]�

Hello World! with Device Code

� Triple angle brackets mark a call from host code to device code
� Also called a “kernel launch”
� NOTE: we’ll return to the above (1,1) parameters soon

� That’s all that is required to execute a function on the GPU…

�������� !"!###�
�

[NVIDIA]�

Hello World! with Device Code

� Actually, ���������
 does not do anything yet...

���������� ���	 ��������� ���	
��
�

��� ����� ���	
��
�������� !"!###�
�

������ �����������	����
�
������ ��

�

Output, on Euler:

$ nvcc hello.cu
$ a.out
Hello World!
$

[NVIDIA]�

CUDA: This is it…

Compiling CUDA Code
[with ���� driver]

NVCC

C/C++ CUDA
Application

PTX to Target
Compile

K20X … C2050

Target binary code

PTX Code

CPU Code

12

PTX: Parallel Thread eXecution

� PTX: a pseudo-assembly language
used in CUDA programming
environment.

� nvcc translates code written in
CUDA’s C into PTX

� nvcc subsequently invokes a
compiler which translates the PTX
into a binary code which can be run
on a certain GPU

13

���������� ���	 ����$������ ��� %�"� ��� �

�

��� ��	 &� ���'�() *)%���'�+�� *) ,� �-���	() *)�
�� ���	 ��
��

�.��	/�&���	�
�

�

�����!��1*+����2�����(����
�.
�
� �#34����#�
.
����1*+����2�����(���
-
�.
�
� ��56����#�
.
����1*+����2�����(�����
�
���� �#*3�7��/40�
���� �#56�7�/30�
���� �#34�7��/30�
���� �.��� 7./50�
��	� *4 8 +
9:;<�������1*+����2�����(��=
�	��#*3�7��*-�7��
�����
�	��#*3�7��6-�7�������
�#��>����#*3�7�*-�7��*-�7��6�
����#56�#*3�7�6-�7������

���#56�7�5-�7�6-�7�*�
���.
�
���56�7�4-�
���#�
.
����1*+����2�����(������
���.�����56�7.*-�7�4-�7�5�
?7.*���
�9:��+�*+63�
��	� *4 @ +
���.
�
��#34�7��*-�
���#�
.
����1*+����2�����(���
� �
�����34��56�7��6-�7�5�
�#��>�����56�7��5-�7�5-�4�

���#34�7��4-�7��*-�7��5�
�����	�
���56�
7��4A+�-�7�5�
9:��+�*+63=
��	� *4 ** +
�����
9:;<�����1*+����2�����(��=
$�

PTX for ����$�����

The CUDA Execution Model is Asynchronous

80

This is how your
C code looks like

This is how the code gets executed on the hardware in
heterogeneous computing. GPU calls are asynchronous…

0)�'���������$������

0)�'���������$�����!

Languages Supported in CUDA

� Note that everything is done in C

� Yet minor extensions are needed to flag the fact that a function actually represents
a kernel, that there are functions that will only run on the device, etc.
� You end up working in “C with extensions”

� FOTRAN is supported, we’ll not cover here though

� There is support for C++ programming (operator overload, new/delete, etc.)
� Not fully supported yet

81

CUDA Function Declarations
(the “C with extensions” part)

Executed
on the:

Only callable
from the:

���������� float myDeviceFunc() device device

����	�
��� �	�� myKernelFunc() device host

���	���� float myHostFunc() host host

� ����	�
��� defines a kernel function, launched by host, executed
on the device

� Must return �	��

� For a full list, see CUDA Reference Manual:
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

2

__global__ void kernelFoo(...); // declaration

dim3 DimGrid(100, 50); // 5000 thread blocks
dim3 DimBlock(4, 8, 8); // 256 threads per block

kernelFoo<<< DimGrid, DimBlock>>>(...your arg list comes here…);

The Concept of Execution Configuration

� A kernel function must be called with an execution configuration:

2�

� NOTE: Any call to a kernel function is asynchronous
� By default, execution on host doesn’t wait for kernel to finish

Example

� The host call below instructs the GPU to execute the function
(kernel) “foo ” using 25,600 threads
� Two arguments are passed down to each thread executing the kernel “��� ”

� In this execution configuration, the host instructs the device that it is
supposed to run 100 blocks each having 256 threads in it

� The concept of block is important since it represents the entity that
gets executed by an SM (stream multiprocessor)

20

More on the Execution Model
[Some Constraints]

� There is a limitation on the number of blocks in a grid:
� The grid of blocks can be organized as a 3D structure: max of 65535 by 65535

by 65535 grid of blocks (about 280,000 billion blocks)

� Threads in each block:
� The threads can be organized as a 3D structure (x,y,z)
� The total number of threads in each block cannot be larger than 1024

85

Simple Example:
Matrix Multiplication

� A straightforward matrix multiplication example that illustrates the
basic features of memory and thread management in CUDA
programs

� Use only global memory (don’t bring shared memory into picture yet)
� Matrix will be of small dimension, job can be done using one block
� Concentrate on

� Thread ID usage

� Memory data transfer API between host and device

25HK-UIUC

Square Matrix Multiplication Example

� Compute P = M * N
� The matrices P, M, N are of size WIDTH x WIDTH
� Assume WIDTH was defined to be 32

� Software Design Decisions:
� One thread handles one element of P
� Each thread will access all the entries in

one row of M and one column of N
� 2*WIDTH read accesses to global memory
� One write access to global memory

M

N

P

W
ID

T
H

W
ID

T
H

WIDTH WIDTH
21

Multiply Using One Thread Block

� One Block of threads computes matrix P
� Each thread computes one element of P

� Each thread
� Loads a row of matrix M
� Loads a column of matrix N
� Perform one multiply and addition for each

pair of M and N elements
� Compute to off-chip memory access ratio

close to 1:1
� Not that good, acceptable for now…

� Size of matrix limited by the number of
threads allowed in a thread block

Grid 1

Block 1

3 2 5 4

2

4

2

6

48

Thread
(2, 2)

width

M
P

N

22HK-UIUC

Matrix Multiplication:
Traditional Approach, Coded in C

11�2����)������
��'����������-���345
�-�6�����	���� ��
��'�6����

���	 2����)2��7���6�� '��6� 2����)�2"� '��6� 2����)�8"�2����)�4

����

��� � ��� ��&������ �2*-���-���,,�
��
��� � ��� 9�&����9� �8*:�	�-��,,9
��

	����� 6���&���
��� � ��� ��&������ �2*:�	�-��,,�
��

	����� ��&�2*�������6.��%�2*:�	�- ,��/�� 11���'-�����������:����2
	����� ��&�8*�������6.��%�8*:�	�- ,�9/��� 11���'-���������'���������8
6���,&���%���

�
4*�������6.��%�8*:�	�- ,�9/�&�6���

�
�

�

23

Step 1: Matrix Multiplication, Host-side.
Main Program Code

��� ����� ���	
��
11�;���'������	���������<���-�������'�6*
11�=-����6��������������;���'���2����)>�6-���	����� �������<������:��-
11����	���������6����	���?�@�6>�!*��8�>����������-� ����6�6������<���

2����)��2��&�;���'���2����)��(+=�"��(+=�"�!
��
2����)��8��&�;���'���2����)��(+=�"��(+=�"�!
�
2����)��4��&�;���'���2����)��(+=�"��(+=�"��
�

11�2�%�8�����-��	���'�
2����)2��7�+���'��2"�8"�4
�

11�A���������'�6
A���2����)�2
�
A���2����)�8
�
A���2����)�4
�

������ ��
�

3�HK-UIUC

Step 2: Matrix Multiplication
[host-side code]

3�

���	 2����)2��7�+���'�� '��6� 2����)�2"� '��6� 2����)�8"�2����)�4

�

11�B��	�2���	�8�����-��	���'�
2����)�2	 &�;���'���+���'�2����)�2
�
3�
�=�+���'�2����)�2	"�2
�
2����)�8	 &�;���'���+���'�2����)�8
�
3�
�=�+���'�2����)�8	"�8
�

11�;���'����4�����-��	���'�
2����)�4	 &�;���'���+���'�2����)�4
�

11�C���
��-���)�'������'������������
	��D 	��E��	�!"�!"�!
�
	��D 	��F��'���(+=�"��(+=�
�

11�B���'-��-�������������-��	���'�
2����)2��$����� 	��E��	"�	��F��'�###�2	"�8	"�4	
�

11�G��	�4�������-��	���'�
3�
�A���+���'�2����)�4"�4	
��

11�A����	���'�������'�6
A���+���'�2����)�2	
�
A���+���'�2����)�8	
�
A���+���'�2����)�4	
�

�HK-UIUC

11�2����)������
��'�������������H �-���	�6
�'���'��� ��
���������� ���	 2����)2��$������2����)�2"�2����)�8"�2����)�4
��

11�I+�=-���	�(�	�)��'��
������4.��/.�)/J
��� �) &� �-���	() *)�
��� �� &� �-���	() *��

11�4����� :������	��
�6��������-�����������4.��/.�)/ *��
11�=-����6"�4*�������6.�� %�4*�:�	�-�,��)/�&�4�����
����� 4����� &���

��� � ��� ��&������ �2*:�	�-��,,�
����
����� 2������� &�2*�������6.�� %�2*:�	�- ,��/�
����� 8������� &�8*�������6.��%�8*�:�	�-�,��)/�
4����� ,&�2������� %�8��������

�

11������������)����	���'������������'-��-���	������ ������
4*�������6.�� %�4*�:�	�-�,��)/�&�4������

�

Step 4: Matrix Multiplication- Device-side Kernel Fu nction

3

M

N

P

W
ID

T
H

W
ID

T
H

WIDTH WIDTH

tx

ty

11�;���'������	���'�������)����6����6�<���6�2*
2����)�;���'���+���'�2����)� '��6� 2����)�2
��

2����)�2	���'� &�2�
��� 6�<��&�2*:�	�- %�2*-���-� %� 6�<��� � �����
�
'�	�2����' �� ���	 %%
K2	���'�*�������6"�6�<�
�
������ 2	���'��

�

11�3�
����-�6�������)������	���'�������)*
���	 3�
�=�+���'�2����)�2����)�2	���'�"� '��6� 2����)�2-�6�
��

��� 6�<��&�2-�6�*:�	�- %�2-�6�*-���-� %� 6�<��� � �����
�
'�	�2��'
� �2	���'�*�������6"�2-�6�*�������6"�6�<�"�'�	�2��'
� ��6�=�+���'�
�

�

11�3�
����	���'�������)������-�6�������)*
���	 3�
�A���+���'�2����)�2����)�2-�6�"� '��6� 2����)�2	���'�
��

��� 6�<��&�2	���'�*:�	�- %�2	���'�*-���-� %� 6�<��� � �����
�
'�	�2��'
� �2-�6�*�������6"�2	���'�*�������6"�6�<�"�'�	�2��'
� +���'�=���6�
�

�

11�A������	���'�������)*
���	 A���+���'�2����)�2����)�2
��

'�	�A��� �2*�������6
�
�

���	 A���2����)�2����)�2
��
�����2*�������6
�

�

Step 4: Some Loose Ends

3�
HK-UIUC

Block and Thread Index (Idx)

� Threads and blocks have indices
� Used by each thread the decide

what data to work on (more later)
� Block Index: a triplet of ����
� Thread Index: a triplet of ����

� Why this 3D layout?
� Simplifies memory

addressing when processing
multidimensional data

� Handling matrices
� Solving PDEs on subdomains
� …

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Block (1, 1)

Thread
(0, 1)

Thread
(1, 1)

Thread
(2, 1)

Thread
(3, 1)

Thread
(4, 1)

Thread
(0, 2)

Thread
(1, 2)

Thread
(2, 2)

Thread
(3, 2)

Thread
(4, 2)

Thread
(0, 0)

Thread
(1, 0)

Thread
(2, 0)

Thread
(3, 0)

Thread
(4, 0)

Courtesy: NVIDIA 30

A Couple of Built-In Variables
[Critical in supporting the SIMD parallel computing paradigm]

� It’s essential for each thread to be able to find out the grid and block
dimensions and its block index and thread index

� Each thread when executing a kernel has access to the following read-
only built-in variables
� �-���	() (����D) – contains the thread index within a block

� ���'�+�� (��D) – contains the dimension of the block

� ���'�() (����D) – contains the block index within the grid

� ���	+�� (��D) – contains the dimension of the grid

� [:��
C�<� (����) – provides warp size, we’ll talk about this later…]

34

Thread Index vs. Thread ID
[critical in (i) understanding how SIMD is supported in CUDA,

and (ii) understanding the concept of “warp”]

35

Revisit - Execution Configuration:
Grids and Blocks

� A kernel is executed as a grid of blocks
of threads

� All threads executing a kernel can
access several device data memory
spaces

� A block [of threads] is a collection of
threads that can cooperate with each
other by:

� Synchronizing their execution

� Efficiently sharing data through a low
latency shared memory

� Exercise:
� How was the grid defined for this pic?

� I.e., how many blocks in X and Y directions?

� How was a block defined in this pic?

Host

Kernel
1

Kernel
2

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Grid 2

Block (1, 1)

Thread
(0, 1)

Thread
(1, 1)

Thread
(2, 1)

Thread
(3, 1)

Thread
(4, 1)

Thread
(0, 2)

Thread
(1, 2)

Thread
(2, 2)

Thread
(3, 2)

Thread
(4, 2)

Thread
(0, 0)

Thread
(1, 0)

Thread
(2, 0)

Thread
(3, 0)

Thread
(4, 0)

31[NVIDIA]�

� Purpose of Example: see a scenario of how multiple blocks are
used to index entries in an array

� First, recall this: there is a limit on the number of threads you can
squeeze in a block (up to 1024 of them)

� Note: In the vast majority of applications you need to use many
blocks (each of which contains the same number N of threads) to
get a job done. This example puts things in perspective

Example: Array Indexing

� With M threads per block a unique index for each thread is given by:

��� ������ �����
������ A���	�,����� �� � �

00 11 7722 33 44 55 66 77 00 11 22 33 44 55 66 77 00 11 22 33 44 55 66 77 00 11 22 33 44 55 66

threadIdx.x threadIdx.x threadIdx.x threadIdx.x

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 3

� No longer as simple as using only ����
������
� Consider indexing into an array, one thread accessing one element
� Assume you have � B threads per block and the array is 32 entries long

[NVIDIA]�

Example: Array Indexing
[Important to grasp: shows thread to task mapping]

Example: Array Indexing

� What will be the array entry that thread of index 5 in block of index 2
will work on?

int index = threadIdx.x + blockIdx.x * M;

= 5 + 2 * 8;
= 21;

00 11 7722 33 44 55 66 77 00 11 22 33 44 55 66 77 00 11 22 33 44 5 66 77 00 11 22 33 44 55 66

threadIdx.x = 5

blockIdx.x = 2

M = 8

00 11
3
1
3
1

22 33 44 55 66 77 88 99 1010 1111 1212 1313 1414 1515 1616 1717 1818 1919 2020 2121 2222 2323 2424 2525 2626 2727 2828 2929 3030

00 11
3
1
3
1

22 33 44 55 66 77 88 99 1010 1111 1212 1313 1414 1515 1616 1717 1818 1919 2020 21 2222 2323 2424 2525 2626 2727 2828 2929 3030

[NVIDIA]�

A Recurring Theme in CUDA Programming
[and in SIMD in general]

� Imagine you are one of many threads, and you have your
thread index and block index

� You need to figure out what the work you need to do is
� Just like we did on previous slide, where thread 5 in block 2 mapped into 21

� You have to make sure you actually need to do that work
� In many cases there are threads, typically of large id, that need to do no work
� Example: you launch two blocks with 512 threads but your array is only 1000

elements long. Then 24 threads at the end do nothing

���

Before Moving On…
[Some Words of Wisdom]

� In GPU computing you launch as many threads as data
items (tasks, jobs) you have to perform
� This replaces the purpose in life of the “for” loop
� Number of threads & blocks is established at run-time

� Number of threads = Number of data items (tasks)
� It means that you’ll have to come up with a rule to match a thread

to a data item (task) that this thread needs to process
� Solid source of errors and frustration in GPU computing

� It never fails to deliver (frustration)

:-(
102

[Sidebar]

Timing Your Application

� Timing support – part of the CUDA API
� You pick it up as soon as you include '�	�*- #

� Why it is good to use
� Provides cross-platform compatibility
� Deals with the asynchronous nature of the device calls by relying on events and

forced synchronization

� Reports time in miliseconds, accurate within 0.5 microseconds
� From NVIDIA CUDA Library Documentation:

� Computes the elapsed time between two events (in milliseconds with a resolution
of around 0.5 microseconds). If either event has not been recorded yet, this
function returns '�	�0����(�����	L���� . If either event has been recorded with
a non-zero stream, the result is undefined. 103

Timing Example
~ Timing a query of device 0 properties ~

104

M��'��	� ��6�����#
M��'��	� '�	�*-#

��� �����
��
'�	�0������ 6����0����"�6��
0������
'�	�0����3������K6����0����
��
'�	�0����3������K6��
0����
�

'�	�0����G�'��	�6����0����"��
�

'�	�+���'�4��
 	���'�4��
�
'��6� ��� '������+���'� &���
�� �'�	�E��+���'�4��
�����6�K	���'�4��
"�'������+���'�
�&&�'�	�C�''�66
�

������ �+���'��N	>�N6��� "�'������+���'�"�	���'�4��
*����
�

'�	�0����G�'��	�6��
0����"��
��
'�	�0����C��'-����<��6��
0����
��
����� ���
6�	=�����
'�	�0����0��
6�	=����K���
6�	=���"�6����0����"�6��
 0����
�
6�	>>'��� � �=�����������	���'��
��
�����6>�� ����
6�	=��� � ���6��� �

'�	�0����+�6�����6����0����
��
'�	�0����+�6�����6��
0����
�
������ ��

�

