Advanced Computing for Engineering Applications

Dan Negrut
Simulation-Based Engineering Lab
Wisconsin Applied Computing Center
Department of Mechanical Engineering
Department of Electrical and Computer Engineering
University of Wisconsin-Madison

© Dan Negrut, 2013
UW-Madison

Milano
18-23 November
2013
Why Learn More about GPUs?

- Hone our “Computational Thinking” skills

- “Computational Thinking” cannot be built without
 - Working on our programming skills
 and more importantly,
 - Gaining a good understanding of how the hardware supports the execution of your code (the hardware/software interplay)

- Good programming skills ensures we get correct results
- Computational thinking allows us to get the correct results fast
The CUDA API
What is an API?

- Application Programming Interface (API)
 - “A set of functions, procedures or classes that an operating system, library, or service provides to support requests made by computer programs” (from Wikipedia)
 - Example: OpenGL, a graphics library, has its own API that allows one to draw a line, rotate it, resize it, etc.

- In this context, CUDA provides an API that enables you to tap into the computational resources of the NVIDIA’s GPUs
 - This is what replaced old GPGPU way of programming the hardware
 - CUDA API exposed to you through a collection of header files that you include in your program
On the CUDA API

- Reading the CUDA Programming Guide you’ll run into numerous references to the CUDA Runtime API and CUDA Driver API
 - Many time they talk about “CUDA runtime” and “CUDA driver”. What they mean is CUDA Runtime API and CUDA Driver API

- CUDA Runtime API – is the friendly face that you can choose to see when interacting with the GPU. This is what gets identified with “C CUDA”
 - Needs `nvcc` compiler to generate an executable

- CUDA Driver API – low level way of interacting with the GPU
 - You have significantly more control over the host-device interaction
 - Significantly clunkier way to dialogue with the GPU, typically only needs a C compiler

- I don’t anticipate any reason to use the CUDA Driver API
Talking about the API: The C CUDA Software Stack

- Image at right indicates where the API fits in the picture

An API layer is indicated by a thick red line:

- NOTE: any CUDA runtime function has a name that starts with “cuda”
 - Examples: cudaMalloc, cudaFree, cudaMemcpy, etc.
- Examples of CUDA Libraries: CUFFT, CUBLAS, CUSP, thrust, etc.
CUDA runtime API: exposes a set of extensions to the C language
- Spelled out in an appendix of “NVIDIA CUDA C Programming Guide”
- There is many of them → Keep in mind the 20/80 rule

CUDA runtime API:
- Language extensions
 - To target portions of the code for execution on the device

- A runtime library, which is split into:
 - A common component providing built-in vector types and a subset of the C runtime library available in both host and device codes
 - Callable both from device and host
 - A host component to control and access devices from the host
 - Callable from the host only
 - A device component providing device-specific functions
 - Callable from the device only
Language Extensions: Variable Type Qualifiers

<table>
<thead>
<tr>
<th>Variable Type Qualifiers</th>
<th>Memory</th>
<th>Scope</th>
<th>Lifetime</th>
</tr>
</thead>
<tbody>
<tr>
<td>device local int LocalVar;</td>
<td>local</td>
<td>thread</td>
<td>thread</td>
</tr>
<tr>
<td>device shared int SharedVar;</td>
<td>shared</td>
<td>block</td>
<td>block</td>
</tr>
<tr>
<td>device int GlobalVar;</td>
<td>global</td>
<td>grid</td>
<td>application</td>
</tr>
<tr>
<td>device constant int ConstantVar;</td>
<td>constant</td>
<td>grid</td>
<td>application</td>
</tr>
</tbody>
</table>

- __device__ is optional when used with __local__, __shared__, or __constant__

- **Automatic variables** without any qualifier reside in a register
 - *Except arrays*, which reside in local memory (unless they are small and of known constant size)
Common Runtime Component

- “Common” above refers to functionality that is provided by the CUDA API and is common both to the device and host.

- Provides:
 - Built-in vector types
 - A subset of the C runtime library supported in both host and device codes
Common Runtime Component: Built-in Vector Types

- [u]char[1..4], [u]short[1..4], [u]int[1..4], [u]long[1..4], float[1..4], double[1..2]
 - Structures accessed with x, y, z, w fields:
    ```c
    uint4 param;
    int dummy = param.y;
    ```

- dim3
 - Based on uint3
 - Used to specify dimensions
 - You see a lot of it when defining the execution configuration of a kernel (any component left uninitialized assumes default value 1)

See Appendix B in “NVIDIA CUDA C Programming Guide”
Common Runtime Component: Mathematical Functions

- pow, sqrt, cbrt, hypot
- exp, exp2, expm1
- log, log2, log10, log1p
- sin, cos, tan, asin, acos, atan, atan2
- sinh, cosh, tanh, asinh, acosh, atanh
- ceil, floor, trunc, round
- etc.

- When executed on the host, a given function uses the C runtime implementation if available
- These functions only supported for scalar types, not vector types
Host Runtime Component

- Provides functions available only to the host to deal with:
 - **Device** management (including multi-device systems)
 - **Memory** management
 - **Error** handling

- **Examples**
 - **Device memory allocation**
 - cudaMalloc(), cudaFree()
 - **Memory copy from host to device, device to host, device to device**
 - cudaMemcpy(), cudaMemcpy2D(), cudaMemcpyToSymbol(), cudaMemcpyFromSymbol()
 - **Memory addressing** – returns the address of a device variable
 - cudaGetSymbolAddress()
CUDA API: Device Memory Allocation

[Note: picture assumes two blocks, each with two threads]

- **cudaMalloc()**
 - Allocates object in the device **Global Memory**
 - Requires two parameters
 - **Address of a pointer** to the allocated object
 - **Size of** allocated object

- **cudaFree()**
 - Frees object from device **Global Memory**
 - Pointer to freed object
Example Use: A Matrix Data Type

- NOT part of CUDA API
- Used in several code examples
 - 2 D matrix
 - Single precision float elements
 - width * height entries
 - Matrix entries attached to the pointer-to-float member called “elements”
 - Matrix is stored row-wise

```c
typedef struct {
    int width;
    int height;
    float* elements;
} Matrix;
```
Example
CUDA Device Memory Allocation (cont.)

- Code example:
 - Allocate a 64 * 64 single precision float array
 - Attach the allocated storage to Md.elements
 - “d” in “Md” is often used to indicate a device data structure

```c
BLOCK_SIZE = 64;
Matrix Md;
int size = BLOCK_SIZE * BLOCK_SIZE * sizeof(float);

cudaMalloc((void**) &Md.elements, size);
...
//use it for what you need, then free the device memory
cudaFree(Md.elements);
```

Question: why is the type of the first argument (**void** **)?**
CUDA Host-Device Data Transfer

- `cudaMemcpy()`
 - memory data transfer
 - Requires four parameters
 - Pointer to source
 - Pointer to destination
 - Number of bytes copied
 - Type of transfer
 - Host to Host
 - Host to Device
 - Device to Host
 - Device to Device
CUDA Host-Device Data Transfer (cont.)

- Code example:
 - Transfer a 64 * 64 single precision float array
 - M is in host memory and Md is in device memory
 - `cudaMemcpyHostToDevice` and `cudaMemcpyDeviceToHost` are symbolic constants

```c
cudaMemcpy(Md.elements, M.elements, size, cudaMemcpyHostToDevice);
cudaMemcpy(M.elements, Md.elements, size, cudaMemcpyDeviceToHost);
```
Device Runtime Component: Mathematical Functions

- Some mathematical functions (e.g. \(\sin(x) \)) have a less accurate, but faster device-only version (e.g. \(__\sin(x) \))
 - \(__\text{pow} \)
 - \(__\text{log}, __\text{log2}, __\text{log10} \)
 - \(__\text{exp} \)
 - \(__\sin, __\cos, __\tan \)

- Some of these have hardware implementations

- By using the “-use_fast_math” flag, \(\sin(x) \) is substituted at compile time by \(__\sin(x) \)

>> nvcc -arch=sm_20 -use_fast_math foo.cu
CPU vs. GPU – Flop Rate (GFlops)
End API discussion
…… transitioning into...
The Memory Ecosystem
Fermi: Global Memory

- Up to 6 GB of “global memory”
- “Global” in the sense that it doesn’t belong to an SM but rather all SM can access it
GPU vs. CPU – Memory Bandwidth

[GB/sec]

Theoretical GB/s

- CPU
- GeForce GPU
- Tesla GPU

- GeForce GTX TITAN
- Tesla K20X
- Tesla M2090
- GeForce GTX 680
- GeForce GTX 480
- GeForce GTX 280
- Tesla C2050
- GeForce 8800 GTX
- Tesla C1060
- GeForce 7800 GTX
- Sandy Bridge
- GeForce 6800 GT
- Prescott
- Woodcrest
- Bloomfield
- Harpertown
- Westmere
- GeForce FX 5900

Years:
- 2003
- 2004
- 2005
- 2006
- 2007
- 2008
- 2009
- 2010
- 2011
- 2012
- 2013
The Fermi Architecture

- 64 KB L1 cache & shared memory
- 768 KB L2 uniform cache (shared by all SMs)
- Memory operates at its own clock rate
- High memory bandwidth
 - Close to 200 GB/s
CUDA Device Memory Space Overview

[Note: picture assumes two blocks, each with two threads]

- Image shows the memory hierarchy that a block sees while running on an SM

- Each thread can:
 - R/W per-thread registers
 - R/W per-thread local memory
 - R/W per-block shared memory
 - R/W per-grid global memory
 - Read only per-grid constant memory
 - Read only per-grid texture memory

- The host can R/W global, constant, and texture memory

IMPORTANT NOTE: Global, constant, and texture memory spaces are **persistent** across kernels called by the same host application.
Global, Constant, and Texture Memories
(Long Latency Accesses by Host)

- **Global memory**
 - Main means of communicating R/W Data between host and device
 - Contents visible to all threads

- **Texture and Constant Memories**
 - Constants initialized by host
 - Contents visible to all threads

NOTE: We will not emphasize texture here.
The Concept of Local Memory

- Local memory does not physically exist – it’s an abstraction to the local scope of a thread.
- Data that is stored in “local memory” is actually placed in global memory by the compiler.
 - If too many registers are needed for computation (“high register pressure”) the ensuing data overflow is stored in local memory.
 - “Local” means that it’s got local scope; i.e., it’s specific to one thread.
 - Long access times for local memory (Fermi, local memory is cached)
Storage Locations

<table>
<thead>
<tr>
<th>Memory</th>
<th>Location</th>
<th>Cached</th>
<th>Access</th>
<th>Who</th>
</tr>
</thead>
<tbody>
<tr>
<td>Register</td>
<td>On-chip</td>
<td>N/A – resident</td>
<td>Read/write</td>
<td>One thread</td>
</tr>
<tr>
<td>Shared</td>
<td>On-chip</td>
<td>N/A – resident</td>
<td>Read/write</td>
<td>All threads in a block</td>
</tr>
<tr>
<td>Global</td>
<td>Off-chip</td>
<td>Yes</td>
<td>Read/write</td>
<td>All threads + host</td>
</tr>
<tr>
<td>Constant</td>
<td>Off-chip</td>
<td>Yes</td>
<td>Read</td>
<td>All threads + host</td>
</tr>
<tr>
<td>Texture</td>
<td>Off-chip</td>
<td>Yes</td>
<td>Read</td>
<td>All threads + host</td>
</tr>
</tbody>
</table>

Off-chip means on-device; i.e., slow access time.
Access Times

- Register – dedicated HW - single cycle
- Shared Memory – dedicated HW - single cycle
- Local Memory – DRAM: *slow* (unless if cached, which is very likely)
- Global Memory – DRAM: *slow* (unless if cached)
- Constant Memory – DRAM, cached, 1…10s…100s of cycles, depending on cache locality
- Texture Memory – DRAM, cached, 1…10s…100s of cycles, depending on cache locality
- Instruction Memory (invisible) – DRAM, cached
The Three Most Important Parallel Memory Spaces

- **Register:** per-thread basis
 - Private per thread
 - Can spill into local memory (potential performance hit if not cached)

- **Shared Memory:** per-block basis
 - Shared by threads of the same block
 - Used for: Inter-thread communication

- **Global Memory:** per-application basis
 - Available for use to all threads
 - Used for: Inter-thread communication
 - Also used for inter-grid communication
Programmer View of Register File

- **Number of 32 bit registers in one SM:**
 - 8K registers in each SM in G80
 - 16K on Tesla
 - 32K on Fermi
 - 64K on Kepler

- **Size of Register File dependent on your compute capability**

- **Registers are dynamically partitioned across all Blocks assigned to the SM**

- **Once assigned to a Block, these registers are NOT accessible by threads in other Blocks**

- **A thread in a Block can only access registers assigned to itself**
 - Kepler: a thread can have up to 255 registers

Possible per-block partitioning scenarios of the RF available on the SM
Matrix Multiplication Example, Revisited

- **Purpose**
 - See an example where the use of multiple blocks of threads plays a central role
 - Emphasize the role of the shared memory
 - Emphasize the need for the `__syncthreads()` function call

- **NOTE:** A one dimensional array stores the entries in the matrix
Why Revisit the Matrix Multiplication Example?

- In the naïve first implementation the ratio of arithmetic computation to memory transaction (“arithmetic intensity”) very low
 - Each arithmetic computation required one fetch from global memory
 - The matrix M (its entries) is copied from global memory to the device N.width times
 - The matrix N (its entries) is copied from global memory to the device M.height times

- When solving a numerical problem the goal is to go through the chain of computations as fast as possible
 - You don’t get brownie points moving data around but only computing things
The Common Pattern to CUDA Programming

- **Phase 1**: Allocate memory on the device and copy to the device the data required to carry out computation on the GPU

- **Phase 2**: Let the GPU crunch the numbers based on the kernel that you defined

- **Phase 3**: Bring back the results from the GPU. Free memory on the device (clean up…). You’re done.

Rules of Thumb for Efficient GPU Computing:
1. Get the data on the GPU and keep it there
2. Give the GPU enough work to do
3. Focus on data reuse within the GPU to avoid memory bandwidth limitations
A Common Programming Pattern
BRINGING THE SHARED MEMORY INTO THE PICTURE

- Local and global memory reside in device memory (DRAM) - much slower access than shared memory

- An advantageous way of performing computation on the device is to partition ("tile") data to take advantage of fast shared memory:
 - Partition data into data subsets (tiles) that each fits into shared memory
 - Handle each data subset (tile) with one thread block by:
 - Loading the tile from global memory into shared memory, using multiple threads to exploit memory-level parallelism
 - Performing the computation on the tile from shared memory; each thread can efficiently multi-pass over any data element
 - Copying results from shared memory back to global memory
Multiply Using Several Blocks

- One block computes one square sub-matrix C_{sub} of size Block_Size
- One thread computes one entry of C_{sub}

Assumption: A and B are square matrices and their dimensions of are multiples of Block_Size
- Doesn’t have to be like this, but keeps example simpler and focused on the concepts of interest
- In this example work with Block_Size = 16x16

NOTE 1: Similar example provided in the CUDA Programming Guide 3.2
- Available on the 2011 class website

NOTE 2: A similar technique is used on CPUs to improve cache hits. See slide “Blocking Example” at http://cseweb.ucsd.edu/classes/fa10/cse240a/pdf/08/CSE240A-MBT-L15-Cache.ppt.pdf
Matrix Multiplication Example, Revisited

- Purpose
 - See an example where the use of multiple blocks of threads plays a central role
 - Emphasize the role of the shared memory
 - Emphasize the need for the `__syncthreads()` function call

- NOTE: A one dimensional array stores the entries in the matrix
Why Revisit the Matrix Multiplication Example?

- In the naïve first implementation the ratio of arithmetic computation to memory transaction ("arithmetic intensity") very low
 - Each arithmetic computation required one fetch from global memory
 - The matrix M (its entries) is copied from global memory to the device N.width times
 - The matrix N (its entries) is copied from global memory to the device M.height times

- When solving a numerical problem the goal is to go through the chain of computations as fast as possible
 - You don’t get brownie points moving data around but only computing things
The Common Pattern to CUDA Programming

- **Phase 1**: Allocate memory on the device and copy to the device the data required to carry out computation on the GPU

- **Phase 2**: Let the GPU crunch the numbers based on the kernel that you defined

- **Phase 3**: Bring back the results from the GPU. Free memory on the device (clean up…). You’re done.

Rules of Thumb for Efficient GPU Computing:
1. Get the data on the GPU and keep it there
2. Give the GPU enough work to do
3. Focus on data reuse within the GPU to avoid memory bandwidth limitations
Local and global memory reside in device memory (DRAM) - much slower access than shared memory

An advantageous way of performing computation on the device is to partition (“tile”) data to take advantage of fast shared memory:

- Partition data into data subsets (tiles) that each fits into shared memory
- Handle each data subset (tile) with one thread block by:
 - Loading the tile from global memory into shared memory, using multiple threads to exploit memory-level parallelism
 - Performing the computation on the tile from shared memory; each thread can efficiently multi-pass over any data element
Multiply Using Several Blocks

- One block computes one square sub-matrix C_{sub} of size $Block_Size$

- One thread computes one entry of C_{sub}

Assumption: A and B are square matrices and their dimensions of are multiples of $Block_Size$
 - Doesn’t have to be like this, but keeps example simpler and focused on the concepts of interest
 - In this example work with $Block_Size=16\times16$

NOTE 1: Similar example provided in the CUDA Programming Guide 3.2
- Available on the 2011 class website

NOTE 2: A similar technique is used on CPUs to improve cache hits. See slide “Blocking Example” at http://cseweb.ucsd.edu/classes/fa10/cse240a/pdf/08/CSE240A-MBT-L15-Cache.ppt.pdf
A Block of 16 X 16 Threads
// Thread block size
#define BLOCK_SIZE 16

// Forward declaration of the device multiplication func.
__global__ void Muld(float*, float*, int, int, float*);

// Host multiplication function
// Compute C = A * B
// hA is the height of A
// wA is the width of A
// wB is the width of B
void Mul(const float* A, const float* B, int hA, int wA, int wB, float* C) {
 int size;

 // Load A and B to the device
 float* Ad;
 size = hA * wA * sizeof(float);
 cudaMemcpy(Ad, A, size, cudaMemcpyHostToDevice);
 float* Bd;
 size = wA * wB * sizeof(float);
 cudaMemcpy(Bd, B, size, cudaMemcpyHostToDevice);

 // Allocate C on the device
 float* Cd;
 size = hA * wB * sizeof(float);
 cudaMalloc((void**)&Cd, size);

 // Compute the execution configuration assuming
 // the matrix dimensions are multiples of BLOCK_SIZE
 dim3 dimBlock(BLOCK_SIZE, BLOCK_SIZE);
 dim3 dimGrid(wB/dimBlock.x , hA/dimBlock.y);

 // Launch the device computation
 Muld<<<dimGrid, dimBlock>>>(Ad, Bd, wA, wB, Cd);

 // Read C from the device
 cudaMemcpy(C, Cd, size, cudaMemcpyDeviceToHost);

 // Free device memory
 cudaFree(Ad);
 cudaFree(Bd);
 cudaFree(Cd);
}
First entry of the tile

(number of tiles along the width of B)

(43)

(number of tiles down the height of A)

aBegin

aStep

bBegin

bStep
__global__ void Muld(float* A, float* B, int wA, int wB, float* C) {
 // Block index
 int bx = blockIdx.x; // the B (and C) matrix sub-block column index
 int by = blockIdx.y; // the A (and C) matrix sub-block row index

 // Thread index
 int tx = threadIdx.x; // the column index in the sub-block
 int ty = threadIdx.y; // the row index in the sub-block

 // Index of the first sub-matrix of A processed by the block
 int aBegin = wA * BLOCK_SIZE * by;

 // Index of the last sub-matrix of A processed by the block
 int aEnd = aBegin + wA - 1;

 // Step size used to iterate through the sub-matrices of A
 int aStep = BLOCK_SIZE;

 // Index of the first sub-matrix of B processed by the block
 int bBegin = BLOCK_SIZE * bx;

 // Step size used to iterate through the sub-matrices of B
 int bStep = BLOCK_SIZE * wB;

 // The element of the block sub-matrix that is computed
 // by the thread
 float Csub = 0;

 // Shared memory for the sub-matrix of A
 __shared__ float As[BLOCK_SIZE][BLOCK_SIZE];

 // Shared memory for the sub-matrix of B
 __shared__ float Bs[BLOCK_SIZE][BLOCK_SIZE];

 // Loop over all the sub-matrices of A and B required to
 // compute the block sub-matrix
 for (int a = aBegin, b = bBegin;
 a <= aEnd;
 a += aStep, b += bStep) {
 // Load the matrices from global memory to shared memory;
 // each thread loads one element of each matrix
 As[ty][tx] = A[a + wA * ty + tx];
 Bs[ty][tx] = B[b + wB * ty + tx];

 // Synchronize to make sure the matrices are loaded
 __syncthreads();

 // Multiply the two matrices together;
 // each thread computes one element
 // of the block sub-matrix
 for (int k = 0; k < BLOCK_SIZE; ++k)
 Csub += As[ty][k] * Bs[k][tx];

 // Synchronize to make sure that the preceding
 // computation is done before loading two new
 // sub-matrices of A and B in the next iteration
 __syncthreads();

 // Write the block sub-matrix to global memory;
 // each thread writes one element
 int c = wB * BLOCK_SIZE * by + BLOCK_SIZE * bx;
 C[c + wB * ty + tx] = Csub;
 }
}
Synchronization Function

- It’s a device lightweight runtime API function
 - \texttt{void __syncthreads();}
- Synchronizes all threads \textbf{in a block} (acts as a barrier for all threads of a block)
 - Does \textbf{not} synchronize threads from two blocks
- Once all threads have reached this point, execution resumes normally
- Used to avoid RAW/WAR/WAW hazards when accessing shared or global memory
- Allowed in conditional constructs only if the conditional is uniform across the entire thread block
The Cache vs. Shared Mem. Conundrum

- On Fermi and Kepler you can split some fast memory between shared memory and cache

 - Fermi: you can go 16/48 or 48/16 KB for ShMem/Cache

 - Lots of Cache & Little ShMem:
 - Handled for you by the scheduler
 - No control over it
 - Can’t have too many blocks of threads running if blocks use ShMem

 - Lots of ShMem & Little Cache:
 - Good in tiling, if you want to have full control
 - ShMem pretty cumbersome to manage
Memory Issues Not Addressed Yet...

- Not all global memory accesses are equivalent
 - How can you optimize memory accesses?
 - Very relevant question

- Not all shared memory accesses are equivalent
 - How can optimize shared memory accesses?
 - Moderately relevant questions

- To do justice to these topics we’ll need to talk first about scheduling threads for execution
 - Next course segment…
Execution Scheduling Issues
[NVIDIA cards specific]
Topic we are about to discuss:

- You launch on the device many blocks, each containing many threads
- Several blocks can get executed simultaneously on one SM. How is this possible?
CUDA Thread Block

[We already know this…]

- In relation to a Block, the programmer decides:
 - Block size: from 1 to 1024 threads
 - Block dimension (shape): 1D, 2D, or 3D
 - Higher order configurations projected to 1D representation

- Threads have thread idx numbers within Block
- Threads within Block share data and may synchronize while each is doing its work
- Thread program uses thread idx to select work and address shared data
- Beyond the concept of thread idx we brought into the picture the concept of thread id and how to compute a thread id based on the thread index (the 1D projection idea)
There are two schedulers at work in GPU computing:

- A device-level scheduler: assigns blocks to SM that indicate at a given time “excess capacity”

- An SM-level scheduler, which schedules the execution of the threads in a block onto the functional units available to an SM

The more interesting is the SM-level scheduler.
Device-Level Scheduler

- Grid is launched on the device

- Thread Blocks are serially distributed to all the SMs
 - Potentially more than one block per SM

- As Thread Blocks complete kernel execution, resources are freed
 - Device-level scheduler can launch next Block[s] in line

- This is the first levels of scheduling:
 - For running [desirably] a large number of blocks on a relatively small number of SMs (16/14/etc.)

- Limits for resident blocks:
 - 16 blocks can be resident on a Kepler SM
 - 8 blocks can be resident on a Fermi & Tesla SM
SM-Level Scheduler[s]

- Each Thread Block divided in 32-thread “Warps”
 - This is an implementation decision, not part of the CUDA programming model
- Warps are the basic scheduling unit in SM
- Limits, number of resident warps on an SM:
 - 64 warps on Kepler (i.e., 2048 resident threads)
 - 48 warps on Fermi (i.e., 1536 resident threads)
 - 32 warps on Tesla (i.e., 1024 resident threads)
- EXAMPLE: If 3 blocks are processed by an SM and each Block has 256 threads, how many Warps are managed by the SM?
 - Each Block is divided into 256/32 = 8 Warps
 - There are 8 * 3 = 24 Warps
 - At any point in time, only one of the 24 Warps will be selected for instruction fetch and execution.
SM Warp Scheduling

- SM hardware implements almost zero-overhead Warp scheduling
 - Warps whose next instruction has its operands ready for consumption are eligible for execution
 - Eligible Warps are selected for execution on a prioritized scheduling policy
 - All threads in a Warp execute the same instruction when selected

- Cycles needed to dispatch the same instruction for all threads in a warp
 - On Tesla: 4 cycles
 - On Fermi: 1 cycle

- How is this relevant?
 - Suppose you use a Tesla card AND our code has one global memory access every six simple instructions
 - Then, a minimum of 17 Warps are needed to fully tolerate 400-cycle memory latency:

\[
\frac{400}{(6 \times 4)} = 16.6667 \rightarrow 17 \text{ Warps}
\]
Fermi Specifics

- There are two schedulers that issue warps of “ready-to-go” threads.
- One warp issued at each clock cycle by each scheduler.
- During no cycle can more than 2 warps be dispatched for execution on the four functional units.
- Scoreboarding is used to figure out which warp is ready.
Example: Fermi Related

- Scheduler works at 607 MHz
- Functional units work at 1215 MHz

Question:
 - What is the peak flop rate of GTX480?
 - 15 SMs * 32 SPs * 1215 * 2 (Fused Multiplied Add) = 1166400 Mflops
 - That is, 1.166 Tflops, single precision
Fermi Specifics

- As illustrated in the picture, at no time can we see more than 2 warps being dispatched for execution during a cycle.
- Note that at any given time we might have more than two functional units working though (which is actually very good, we keep it busy).
Technical Specifications and Features

This is us: most GPUs on Euler are Fermi

Legend:
“multiprocessor” stands for Stream Multiprocessor (what we called SM)

<table>
<thead>
<tr>
<th>Technical Specifications</th>
<th>1.0</th>
<th>1.1</th>
<th>1.2</th>
<th>1.3</th>
<th>2.x</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum x- or y-dimension of a grid of thread blocks</td>
<td>65535</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum number of threads per block</td>
<td>512</td>
<td>1024</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum x- or y-dimension of a block</td>
<td>512</td>
<td>1024</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum z-dimension of a block</td>
<td>64</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Warp size</td>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum number of resident blocks per multiprocessor</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum number of resident warps per multiprocessor</td>
<td>24</td>
<td>32</td>
<td>48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum number of resident threads per multiprocessor</td>
<td>768</td>
<td>1024</td>
<td>1536</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of 32-bit registers per multiprocessor</td>
<td>8 K</td>
<td>16 K</td>
<td>32 K</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum amount of shared memory per multiprocessor</td>
<td>16 KB</td>
<td>48 KB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of shared memory banks</td>
<td>16</td>
<td>32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amount of local memory per thread</td>
<td>16 KB</td>
<td>512 KB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant memory size</td>
<td>64 KB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cache working set per multiprocessor for constant memory</td>
<td>8 KB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum number of instructions per kernel</td>
<td>2 million</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compute Capability</th>
<th>1.0</th>
<th>1.1</th>
<th>1.2</th>
<th>1.3</th>
<th>2.x</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integer atomic functions operating on 32-bit words in global memory (Section B.11)</td>
<td>No</td>
<td></td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Integer atomic functions operating on 64-bit words in global memory (Section B.11)</td>
<td>No</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Integer atomic functions operating on 32-bit words in shared memory (Section B.11)</td>
<td>No</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Warp vote functions (Section B.12)</td>
<td>No</td>
<td></td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Double-precision floating-point numbers</td>
<td>No</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Floating-point atomic addition operating on 32-bit words in global and shared memory (Section B.11)</td>
<td></td>
<td>No</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>__ballot() (Section B.12)</td>
<td></td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>__threadence_system() (Section B.5)</td>
<td></td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>__syncthreads_count(), __syncthreads_and(), __syncthreads_or() (Section B.6)</td>
<td></td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface functions (Section B.9)</td>
<td></td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Threads are Executed in Warps

- Each thread block split into one or more warps
- When the thread block size is not a multiple of the warp size, unused threads within the last warp are disabled automatically
- The hardware schedules each warp independently
- Warps within a thread block can execute independently
Organizing Threads into Warps

- **Thread IDs within a warp are consecutive and increasing**
 - This goes back to the 1D projection from thread index to thread ID
 - Remember: In multidimensional blocks, the x thread index runs first, followed by the y thread index, and finally followed by the z thread index
 - Threads with ID 0 through 31 make up Warp 0, 32 through 63 make up Warp 1, etc.

- **Partitioning of threads in warps is always the same**
 - You can use this knowledge in control flow
 - So far, the warp size of 32 has been kept constant from device to device and CUDA version to CUDA version

- **While you can rely on ordering among threads, DO NOT rely on any ordering among warps since there is no such thing**
 - Warp scheduling is not something you control in CUDA
Thread and Warp Scheduling

- An SM can switch between warps with no apparent overhead
- Warps with instruction whose inputs are ready are eligible to execute, and will be considered when scheduling
- When a warp is selected for execution, all [active] threads execute the same instruction in lockstep fashion
Revisiting the Concept of Execution Configuration

- Prefer thread block sizes that result in mostly full warps

Bad: \(\text{kernel} \llll N, 1 \rrrr \) (...)

Okay: \(\text{kernel} \llll (N+31) / 32, 32 \rrrr \) (...)

Better: \(\text{kernel} \llll (N+127) / 128, 128 \rrrr \) (...)

- Prefer to have enough threads per block to provide hardware with many warps to switch between
 - This is how the GPU hides memory access latency

- Resource like \texttt{__shared__} may constrain number of threads per block

- Algorithm and decomposition of problem will reveal the preferred amount of shared data and \texttt{__shared__} allocation
 - We often have to take a step back and come up with a new algorithm that exposes parallelism
Scheduling: Summing It Up…

- When a CUDA program on the host CPU invokes a kernel grid, the blocks of the grid are enumerated and distributed to SMs with available execution capacity.

- Up to 8 blocks (on Fermi) can be executed at the same time by an SM.

- When a block of threads is executed on an SM, its threads are grouped in warps. The SM manages several warps at the same time.

- When a thread block finishes, a new block is launched on the vacated SM.
Granularity Considerations
[NOTE: Specific to Fermi]

- For Matrix Multiplication example (with shared memory), should I use 8X8, 16X16 or 64X64 threads per blocks?
 - For 8X8, we have 64 threads per Block. Since each Fermi SM can manage up to 1536 resident threads, it could take up to 32 Blocks. However, each SM is limited to 8 resident Blocks, so only 512 threads will go into each SM!
 - For 16X16, we have 256 threads per Block. Since each Fermi SM can take up to 1536 resident threads, it can take up to 6 Blocks unless other resource considerations overrule.
 - Next you need to see how much shared memory and how many registers get used in order to understand whether you can actually have four blocks per SM
 - 64X64 is a no starter, you can only have up to 1024 threads in a block, the tile cannot be this big

- NOTE: this is the “computational thinking” we discussed earlier
Thread Divergence

Consider the following code:

```c
__global__ void odd_even(int n, int* x)
{
    int i = threadIdx.x + blockDim.x * blockIdx.x;
    if( (i & 0x01) == 0 )
    {
        x[i] = x[i] + 1;
    }
    else
    {
        x[i] = x[i] + 2;
    }
}
```

Half the threads in the warp execute the `if` clause, the other half the `else` clause.
Thread Divergence

[2/4]

- The system automatically handles control flow divergence, conditions in which threads within a warp execute different paths through a kernel.

- Often, this requires that the hardware execute multiple paths through a kernel for a warp.
 - For example, both the if clause and the corresponding else clause.
Thread Divergence

[3/4]

```c
__global__ void kv(int* x, int* y)
{
    int i = threadIdx.x + blockDim.x * blockIdx.x;
    int t;
    bool b = f(x[i]);
    if (b)
    {
        // g(x)
        t = g(x[i]);
    }
    else
    {
        // h(x)
        t = h(x[i]);
    }
    y[i] = t;
}
```
Thread Divergence

- Nested branches are handled similarly
 - Deeper nesting results in more threads being temporarily disabled

- In general, one does not need to consider divergence when reasoning about the correctness of a program
 - Certain code constructs, such as those involving schemes in which threads within a warp spin-wait on a lock, can cause deadlock

- In general, one does need to consider divergence when reasoning about the performance of a program

- NVIDIA calls execution model SIMT (Single Instruction Multiple Threads) to differentiate from actual SIMD where threads really are in lockstep
Performance of Divergent Code

- Performance decreases with degree of divergence in warps
- Here’s an extreme example...

```c
__global__ void dv(int* x) {
    int i = threadIdx.x + blockDim.x * blockIdx.x;
    switch (i % 32) {
        case 0 : x[i] = a(x[i]); break;
        case 1 : x[i] = b(x[i]); break;
        ...  
        case 31: x[i] = v(x[i]); break;
    }
}
```
Performance of Divergent Code

[2/2]

- Compiler and hardware can detect when all threads in a warp branch in the same direction
 - Example: all take the `if` clause, or all take the `else` clause
 - The hardware is optimized to handle these cases without loss of performance
 - In other words, use of `if` or `switch` does not automatically translate into disaster:

    ```
    if (threadIdx.x / WARP_SIZE >= 2) { }
    ```

 - Creates two different control paths for threads in a block
 - Branch granularity is a whole multiple of warp size; all threads in any given warp follow the same path. There is no warp divergence...

- The compiler can also compile short conditional clauses to use predicates (bits that conditional convert instructions into null ops)
 - Avoids some branch divergence overheads, and is more efficient
 - Often acceptable performance with short conditional clauses
Global Memory Access Issues
Data Access “Divergence”

- Concept is similar to thread divergence and often conflated

- Hardware is optimized for accessing contiguous blocks of global memory when performing loads and stores

- If a warp doesn’t access a contiguous block of global memory the effective bandwidth is reduced

- Remember this: when you look at a kernel you see what a collection of threads; i.e., a warp, is supposed to do in lockstep fashion
Global Memory

- Two aspects of global memory access are relevant when fetching data into shared memory and/or registers
 - The layout of the access to global memory (the pattern of the access)
 - The size/alignment of the data you try to fetch from global memory
“Memory Access Layout”

What is it?

- The basic idea:
 - Suppose each thread in a warp accesses a global memory address for a load operation at some point in the execution of the kernel.

 - These threads can access global memory data that is either (a) neatly grouped, or (b) scattered all over the place.

 - Case (a) is called a “coalesced memory access”:
 - If you end up with (b) this will adversely impact the overall program performance.

- Analogy:
 - Can send one truck on six different trips to bring back each time a bundle of wood.
 - Alternatively, can send truck to one place and get it back fully loaded with wood.
Memory Facts, Fermi GPUs

- There is 64 KB of fast memory on each SM that gets split between L1 cache and Shared Memory
 - You can split 64 KB as “L1/Sh: 16/48” or “L1/Sh: 48/16”

- L2 cache: 768 KB – one big pot available to *all* SMs on the device

- L1 and L2 cache used to cache accesses to
 - Local memory, including register spill
 - Global memory

- Whether reads are cached in [L1 & L2] or in [L2 only] can be partially configured on a per-access basis using modifiers to the load or store instruction
Fermi Memory Layout

[credits: NVIDIA]
GPU-CPU Face Off

<table>
<thead>
<tr>
<th></th>
<th>GPU – NVIDIA Tesla C2050 (Fermi)</th>
<th>CPU – Intel core I7 975 Extreme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processing Cores</td>
<td>448</td>
<td>4 (8 threads)</td>
</tr>
<tr>
<td>Memory</td>
<td>64* KB L1, per SM 768 KB L2, all SMs 3 GB Device Mem.</td>
<td>- 32 KB L1 cache / core - 256 KB L2 (I&D)cache / core - 8 MB L3 (I&D) shared, all cores</td>
</tr>
<tr>
<td>Clock speed</td>
<td>1.15 GHz</td>
<td>3.20 GHz</td>
</tr>
<tr>
<td>Memory bandwidth</td>
<td>140 GB/s</td>
<td>25.6 GB/s</td>
</tr>
<tr>
<td>Floating point operations/s</td>
<td>515 x 10^9 Double Precision</td>
<td>70 x 10^9 Double Precision</td>
</tr>
</tbody>
</table>

* - split 48/16
More Memory Facts
[Fermi GPUs]

- All global memory accesses are cached

- A cache line is 128 bytes
 - It maps to a 128-byte aligned segment in device memory
 - Note: it so happens that 128 bytes = 32 (warp size) * 4 bytes
 - In other words, 32 floats or 32 ints can be brought over in fell swoop

- If the size of the type accessed by each thread is more than 4 bytes, a memory request by a warp is first split into separate 128-byte memory requests that are issued independently
More Memory Facts
[Fermi GPUs]

- The memory access schema is as follows:
 - Two memory requests, one for each half-warp, if the size is 8 bytes
 - Four memory requests, one for each quarter-warp, if the size is 16 bytes.
- Each memory request is then broken down into cache line requests that are issued independently
- NOTE: a cache line request is serviced at the throughput of L1 or L2 cache in case of a cache hit, or at the throughput of device memory, otherwise
More Memory Facts
[Fermi GPUs]

- When it comes to memory store transactions to global memory:
 - First, the L1 cache is invalidated if need be
 - Next, the data is stored in L2
 - The data is actually written to global memory only if/when the data gets evicted from L2
- This strategy works since L2 is visible to all SMs on the device (unlike L1)
- How about read-before-write issues?
 - Use atomic operations (discussed next lecture)
Examples of Global Mem. Access by a Warp

- **Setup:**
 - You want to access floats or integers
 - In order words, each thread is requesting a 4-Byte word

- **Scenario A: access is aligned and sequential**

 ![Diagram showing aligned and sequential access]

<table>
<thead>
<tr>
<th>Addresses</th>
<th>96</th>
<th>128</th>
<th>160</th>
<th>192</th>
<th>224</th>
<th>256</th>
<th>288</th>
</tr>
</thead>
<tbody>
<tr>
<td>Threads</td>
<td>0</td>
<td>...</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compute capability</td>
<td>1.0 and 1.1</td>
<td>1.2 and 1.3</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Memory transactions</td>
<td>Uncached</td>
<td>Cached</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 x 64B at 128</td>
<td>1 x 64B at 128</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 x 64B at 192</td>
<td>1 x 64B at 192</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 x 128B at 128</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Good to know:** any address of memory allocated with `cudaMalloc` is a multiple of 256
 - That is, the addressed is 256 byte aligned, which is stronger than 128 byte aligned
Examples of Global Mem. Access by a Warp

- **Scenario B: Aligned but non-sequential**

- **Scenario C: Misaligned and sequential**

Why is this important?

- Compare Scenario B to Scenario C

- Basically, you have in Scenario C half the effective bandwidth you get in Scenario B
 - Just because of the alignment of your data access

- If your code is memory bound and dominated by this type of access, you might see a doubling of the run time…

- The moral of the story:
 - When you reach out to fetch data from global memory, visualize how a full warp reaches out for access. Is the access coalesced and well aligned?

- Scenarios A and B: illustrate what is called a coalesced memory access
Test Your Understanding

- Say you use in your program complex data constructs that could be organized using C-structures

- Based on what we’ve discussed so far today, how is it more advantageous to store data in global memory?
 - Alternative A: as an array of structures
 - Alternative B: as a structure of arrays
Example: Adding Two Matrices

- You have two matrices A and B of dimension $N \times N$ ($N=32$)
- You want to compute $C = A + B$ in parallel
- Code provided below (some details omitted, such as `#define N 32`)

```c
// Kernel definition
__global__ void MatAdd(float A[N][N], float B[N][N],
                        float C[N][N])
{
    int i = threadIdx.x;
    int j = threadIdx.y;
    C[i][j] = A[i][j] + B[i][j];
}

int main()
{
    ...
    // Kernel invocation with one block of $N \times N \times 1$ threads
    int numBlocks = 1;
    dim3 threadsPerBlock(N, N);
    MatAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);
}
```
Given that the x field of a thread index changes the fastest, is the array indexing scheme on the previous slide good or bad?

The “good or bad” refers to how data is accessed in the device’s global memory.

In other words should we have

\[C[i][j] = A[i][j] + B[i][j] \]

or...

\[C[j][i] = A[j][i] + B[j][i] \]
Choreographing Memory Operations

- Accesses to shared locations (global memory & shared memory) need to be correctly synchronized (coordinated) to avoid race conditions.

- In many common shared memory multithreaded programming models, one uses coordination objects such as locks to synchronize accesses to shared data.

- CUDA provides several scalable synchronization mechanisms, such as efficient barriers and atomic memory operations.

- Whenever possible, try hard to design algorithms with few synchronizations.
 - Coordination between threads impacts execution speed.
Don’t Do This at Home

- Assume thread T1 reads a value defined by thread T0

```c
// update.cu
__global__ void update_race(int* x, int* y)
{
    int i = threadIdx.x + blockDim.x * blockIdx.x;
    if (i == 0) *x = 1;
    if (i == 1) *y = *x;
}

// main.cpp
update_race<<<1,2>>>(d_x, d_y);
cudaMemcpy(y, d_y, sizeof(int), cudaMemcpyDeviceToHost);
```

- Program needs to ensure that thread T1 reads location after thread T0 has written location
Synchronization within Block

- Threads in same block: can use __syncthreads() to specify synchronization point that orders accesses

```c
// update.cu
__global__ void update(int* x, int* y)
{
    int i = threadIdx.x;
    if (i == 0) *x = blockIdx.x;
    __syncthreads();
    if (i == 1) *y = *x;
}

// main.cpp
update<<<1,2>>>(d_x, d_y);
cudaMemcpy(y, d_y, sizeof(int), cudaMemcpyDeviceToHost);
```

- Here’s a fun question: would this work if the kernel is launched with an execution configuration that has two blocks?
Synchronization within Grid

[The Need for Atomics]

- Often not reasonable to split kernels to synchronize reads and writes from different threads to common locations. Here’re two reasons:
 - Values of `__shared__` variables are lost unless explicitly saved
 - Kernel launch overhead is nontrivial – extra launches can degrade performance

- CUDA provides atomic functions (commonly called atomic memory operations) to enforce atomic accesses to shared variables that may be accessed by multiple threads

- Programmers can synthesize various coordination objects and synchronization schemes using atomic functions.
Atomics
Atomic memory operations (atomic functions) are used to solve coordination problems in parallel computer systems.

General concept: provide a mechanism for a thread to update a memory location such that the update appears to happen atomically (without interruption) with respect to other threads.

This ensures that all atomic updates issued concurrently are performed (often in some unspecified order) and that all threads can observe all updates.
Atomic Functions
[1/3]

- Atomic functions perform read-modify-write operations on data residing in global and shared memory

```c
//example of int atomicAdd(int* addr, int val)
__global__ void update(unsigned int* x)
{
    int i = threadIdx.x + blockDim.x * blockIdx.x;
    int j = atomicAdd(x, 1);  // j = *x;
}
```

```c
// snippet of code in main.cpp
int x = 0;
cudaMemcpy(&d_x, &x, cudaMemcpyHostToDevice);
update<<<1,128>>>(x_d);
cudaMemcpy(&x, &d_x, cudaMemcpyDeviceToHost);
```

- Atomic functions guarantee that only one thread may access a memory location while the operation completes
- Order in which threads get to write is not specified though…

NVIDIA [J. Balfour]
Atomic Functions

Atomic functions perform read-modify-write operations on data that can reside in global or shared memory.

Synopsis of atomic function $\text{atomicOP}(a, b)$ is typically

```c
  t1 = *a;   // read
  t2 = t1 \text{ OP} (*b); // modify
  *a = t2;   // write
  \text{return} t1;
```

- The hardware ensures that all statements are executed atomically without interruption by any other atomic functions.
- The atomic function returns the initial value, not the final value, stored at the memory location.
The name atomic is used because the update is performed atomically: it cannot be interrupted by other atomic updates.

The order in which concurrent atomic updates are performed is not defined, and may appear arbitrary.

However, none of the atomic updates will be lost.

Many different kinds of atomic operations:
- Add (add), Sub (subtract), Inc (increment), Dec (decrement)
- And (bit-wise and), Or (bit-wise or), Xor (bit-wise exclusive or)
- Exch (Exchange)
- Min (Minimum), Max (Maximum)
- Compare-and-Swap
A Histogram Example

// Compute histogram of colors in an image

//
// color – pointer to picture color data
// bucket – pointer to histogram buckets, one per color
//

__global__ void histogram(int n, int* color, int* bucket)
{
 int i = threadIdx.x + blockDim.x * blockIdx.x;
 if (i < n)
 {
 int c = colors[i];
 atomicAdd(&bucket[c], 1);
 }
}
Performance Notes

- Atomics are slower than normal accesses (loads, stores)

- Performance can degrade when many threads attempt to perform atomic operations on a small number of locations

- Possible to have all threads on the machine stalled, waiting to perform atomic operations on a single memory location

- Atomics: convenient to use, come at a typically high efficiency loss…
Important note about Atomics

- Atomic updates are not guaranteed to appear atomic to concurrent accesses using loads and stores

```c
__global__ void broken(int n, int* x)
{
    int i = threadIdx.x + blockDim.x * blockIdx.x;
    if (i == 0)
    {
        *x = *x + 1;
    }
    else
    {
        int j = atomicAdd(x, 1); // j = *x; *x = j + i;
    }
}

// main.cpp
broken<<<1,128>>>(128, d_x); // d_x = d_x + {1, 127, 128}
```
Summary of Atomics

- When to use: Cannot use normal load/store for reliable inter-thread communication because of race conditions

- Use atomic functions for infrequent, sparse, and/or unpredictable global communication

- Attempt to use shared memory and structure algorithms to avoid synchronization whenever possible
CUDA: Measuring Speed of Execution
[Gauging Greatness]
Premature Optimization is the Root of All Evil. Yet,…

“Programmers waste enormous amounts of time thinking about, or worrying about, the speed of noncritical parts of their programs, and these attempts at efficiency actually have a strong negative impact when debugging and maintenance are considered. We should forget about small efficiencies, say about 97% of the time: premature optimization is the root of all evil. Yet we should not pass up our opportunities in that critical 3%.”

Donald Knuth

In “Structured Programming With Go To Statements”
Computing Surveys, Vol. 6, No. 4, December 1974
Available on class website.
Next, the discussion focuses on tools you can use to find that 3% of the code worth optimizing…
Code Timing/Profiling

- Lazy man’s solution
 - Do nothing, instruct the executable to register crude profiling info

- Advanced approach: use NVIDIA’s `nvvp` Visual Profiler
 - Visualize CPU and GPU activity
 - Identify optimization opportunities
 - Allows for automated analysis
 - `nvvp` is a cross platform tool (linux, mac, windows)
Lazy Man’s Solution...

- Set the right environment variable and run your executable [illustrated on Euler]:

```plaintext
>> nvcc -O3 -gencode arch=compute_20,code=sm_20 testV4.cu -o testV4_20
>> export CUDA_PROFILE=1
>> ./testV4_20
>> cat cuda_profile_0.log
```

```
# CUDA_PROFILE_LOG_VERSION 2.0
# CUDA_DEVICE 0 GeForce GTX 480
# TIMESTAMPFACTOR fffff6c689a404a8
method,gputime,cputime,occupancy
method=[ memcpyHtoD ] gputime=[ 1001.952 ] cputime=[ 1197.000 ]
method=[ memcpyDtoH ] gputime=[ 1394.144 ] cputime=[ 2533.000 ]
```
Lazy Man’s Solution...

>> nvcc -O3 -gencode arch=compute_20,code=sm_20 testV4.cu -o testV4_20
>> ./testV4_20

CUDA_PROFILE_LOG_VERSION 2.0
CUDA_DEVICE 0 GeForce GTX 480
TIMESTAMPFACTOR fffff6c689a404a8
method,gputime,cputime,occupancy
method=[memcpyHtoD] gputime=[1001.952] cputime=[1197.000]
method=[memcpyDtoH] gputime=[1394.144] cputime=[2533.000]

>> nvcc -O3 -gencode arch=compute_10,code=sm_10 testV4.cu -o testV4_10
>> ./testV4_10

CUDA_PROFILE_LOG_VERSION 2.0
CUDA_DEVICE 0 GeForce GT 130M
TIMESTAMPFACTOR 12764ee9b183e71e
method,gputime,cputime,occupancy
method=[memcpyHtoD] gputime=[1815.424] cputime=[2787.856]
method=[_Z14applyStencillDiiPKfpFpS1_] gputime=[47332.9] cputime=[8.469] occupancy=[0.67]
method=[memcpyDtoH] gputime=[3535.648] cputime=[4555.577]
Lazy Man’s Solution...

```
>> nvcc -O3 -gencode arch=compute_20,code=sm_20 testV4.cu -o testV4_20
>> ./testV4_20

# CUDA_PROFILE_LOG_VERSION 2.0
# CUDA_DEVICE 0 GeForce GTX 480
# TIMESTAMPFACTOR fffff6c689a404a8
method, gputime, cputime, occupancy
method=[ memcpyHtoD ] gputime=[ 1001.952 ] cputime=[ 1197.000 ]
method=[ _Zl14applyStencil1DiiPKfPfS1__ ] gputime=[ 166.944 ] cputime=[ 13.000 ] occupancy=[1.0]
method=[ memcpyDtoH ] gputime=[ 1394.144 ] cputime=[ 2533.000 ]
```

```
>> nvcc -O3 -gencode arch=compute_10,code=sm_10 testV4.cu -o testV4_10
>> ./testV4_10

# CUDA_PROFILE_LOG_VERSION 2.0
# CUDA_DEVICE 0 GeForce GT 130M
# TIMESTAMPFACTOR 12764ee9b183e71e
method, gputime, cputime, occupancy
method=[ memcpyHtoD ] gputime=[ 1815.424 ] cputime=[ 2787.856 ]
method=[ _Zl14applyStencil1DiiPKfPfS1__ ] gputime=[ 47332.9 ] cputime=[ 8.469 ] occupancy=[0.67]
method=[ memcpyDtoH ] gputime=[ 3535.648 ] cputime=[ 4555.577 ]
```
Lazy Man’s Solution...

```
>> nvcc -O3 -gencode arch=compute_20,code=sm_20 testV4.cu -o testV4_20
>> ./testV4_20

# CUDA_PROFILE_LOG_VERSION 2.0
# CUDA_DEVICE 0 GeForce GTX 480
# TIMESTAMPFACTOR fffffff6c689a404a8
method, gputime, cputime, occupancy
method=[ memcpyHtoD ] gputime=[ 1001.952 ] cputime=[ 1197.000 ]
method=[ memcpyDtoH ] gputime=[ 1394.144 ] cputime=[ 2533.000 ]
```

```
>>> nvcc -O3 -gencode arch=compute_10,code=sm_10 testV4.cu -o testV4_10
>>> ./testV4_10

# CUDA_PROFILE_LOG_VERSION 2.0
# CUDA_DEVICE 0 GeForce GT 130M
# TIMESTAMPFACTOR 12764ee9b183e71e
method, gputime, cputime, occupancy
method=[ memcpyHtoD ] gputime=[ 1815.424 ] cputime=[ 2787.856 ]
method=[ _Z14applyStencil1DiiPKfPfS1_ ] gputime=[ 47332.9 ] cputime=[ 8.469 ] occupancy=[0.67]
method=[ memcpyDtoH ] gputime=[ 3535.648 ] cputime=[ 4555.577 ]
```
nvvp: NVIDIA Visual Profiler

- Available on Euler

- Provides a nice GUI and ample information regarding your run

- Many bells & whistles
 - Covering here the basics through a 1D stencil example

- Acknowledgement: Discussion on nvvp uses material from NVIDIA (S. Satoor).
 - Slides that include this material marked by “NVIDIA [S. Satoor]—” sign at bottom of slide
1D Stencil: A Common Algorithmic Pattern
[Problem Used to Introduce Profiling Tool]

- Applying a 1D stencil to a 1D array of elements
 - Function of input elements within a radius

- Fundamental to many algorithms
 - Standard discretization methods, interpolation, convolution, filtering,…

- This example will use weighted arithmetic mean
Serial Algorithm

in

\(f \)

out

\(\Rightarrow \) = CPU Thread

NVIDIA [S. Satoor]→
Serial Algorithm

\[\therefore = \text{CPU Thread} \]

\((\text{radius} = 3) \)

Repeat for each element
int main() {
 int size = N * sizeof(float);
 int wsize = (2 * RADIUS + 1) * sizeof(float);
 //allocate resources
 float *weights = (float *)malloc(wsize);
 float *in = (float *)malloc(size);
 float *out = (float *)malloc(size);
 initializeWeights(weights, RADIUS);
 initializeArray(in, N);

 applyStencil1D(RADIUS,N-RADIUS,weights,in,out);

 //free resources
 free(weights); free(in); free(out);
}

void applyStencil1D(int sIdx, int eIdx, const float *weights, float *in, float *out) {
 for (int i = sIdx; i < eIdx; i++) {
 out[i] = 0;
 //loop over all elements in the stencil
 for (int j = -RADIUS; j <= RADIUS; j++) {
 out[i] += weights[j + RADIUS] * in[i + j];
 }
 out[i] = out[i] / (2 * RADIUS + 1);
 }
}
```c
int main() {
    int size = N * sizeof(float);
    int wsize = (2 * RADIUS + 1) * sizeof(float);
    //allocate resources
    float *weights = (float *)malloc(wsize);
    float *in = (float *)malloc(size);
    float *out = (float *)malloc(size);
    initializeWeights(weights, RADIUS);
    initializeArray(in, N);
    applyStencil1D(RADIUS, N-RADIUS, weights, in, out);
    //free resources
    free(weights); free(in); free(out);
}
```

Allocate and Initialize

- Allocate resources
- Initialize weights
- Initialize array
- Apply stencil

Apply Stencil

```c
def applyStencil1D(int sIdx, int eIdx, const float *weights, float *in, float *out) {
    for (int i = sIdx; i < eIdx; i++) {
        out[i] = 0;
        //loop over all elements in the stencil
        for (int j = -RADIUS; j <= RADIUS; j++) {
            out[i] += weights[j + RADIUS] * in[i + j];
        }
        out[i] = out[i] / (2 * RADIUS + 1);
    }
}
```
int main() {
 int size = N * sizeof(float);
 int wsize = (2 * RADIUS + 1) * sizeof(float);
 //allocate resources
 float *weights = (float *)malloc(wsize);
 float *in = (float *)malloc(size);
 float *out = (float *)malloc(size);
 initializeWeights(weights, RADIUS);
 initializeArray(in, N);
 applyStencil1D(RADIUS, N-RADIUS, weights, in, out);

 //free resources
 free(weights); free(in); free(out);
}

void applyStencil1D(int sIdx, int eIdx, const float *weights, float *in, float *out) {
 for (int i = sIdx; i < eIdx; i++) {
 float out[i] = 0;
 //loop over all elements in the stencil
 for (int j = -RADIUS; j <= RADIUS; j++) {
 out[i] += weights[j + RADIUS] * in[i + j];
 }
 out[i] = out[i] / (2 * RADIUS + 1);
 }
}
int main() {
 int size = N * sizeof(float);
 int wsize = (2 * RADIUS + 1) * sizeof(float);
 //allocate resources
 float *weights = (float *)malloc(wsize);
 float *in = (float *)malloc(size);
 float *out = (float *)malloc(size);
 initializeWeights(weights, RADIUS);
 initializeArray(in, N);

 applyStencil1D(RADIUS, N-RADIUS, weights, in, out);

 //free resources
 free(weights); free(in); free(out);
}

void applyStencil1D(int sIdx, int eIdx, const float *weights, float *in, float *out) {
 for (int i = sIdx; i < eIdx; i++) {
 out[i] = 0;
 //loop over all elements in the stencil
 for (int j = -RADIUS; j <= RADIUS; j++) {
 out[i] += weights[j + RADIUS] * in[i + j];
 }
 out[i] = out[i] / (2 * RADIUS + 1);
 }
}

<table>
<thead>
<tr>
<th>CPU</th>
<th>MEElements/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>i7-930</td>
<td>30</td>
</tr>
</tbody>
</table>

NVIDIA [S. Satoor]→
Parallel Algorithm

\[\bigtriangledown = \text{Thread}\]

Serial: One element at a time

\[\bigtriangledown = \text{Thread}\]

Parallel: Many elements at a time

\[\bigtriangledown = \text{Thread}\]
The GPU kernel

void main() {
 int size = N * sizeof(float);
 int wsize = (2 * RADIUS + 1) * sizeof(float);
 //allocate resources
 float *weights = (float *)malloc(wsize);
 float *in = (float *)malloc(size);
 float *out= (float *)malloc(size);
 initializeWeights(weights, RADIUS);
 initializeArray(in, N);
 float *d_weights; cudaMalloc(&d_weights, wsize);
 float *d_in; cudaMalloc(&d_in, size);
 float *d_out; cudaMalloc(&d_out, size);
 cudaMemcpy(d_weights, weights, wsize, cudaMemcpyHostToDevice);
 cudaMemcpy(d_in, in, size, cudaMemcpyHostToDevice);
 applyStencil1D<<<N/512, 512>>>(RADIUS, N-RADIUS, d_weights, d_in, d_out);
 cudaMemcpy(out, d_out, size, cudaMemcpyDeviceToHost);
 //free resources
 free(weights); free(in); free(out);
 cudaFree(d_weights); cudaFree(d_in); cudaFree(d_out);
}

__global__ void applyStencil1D(int sIdx, int eIdx, const float *weights, float *in, float *out) {
 int i = sIdx + blockIdx.x*blockDim.x + threadIdx.x;
 if(i < eIdx) {
 out[i] = 0;
 //loop over all elements in the stencil
 for (int j = -RADIUS; j <= RADIUS; j++) {
 out[i] += weights[j + RADIUS] * in[i + j];
 }
 out[i] = out[i] / (2 * RADIUS + 1);
 }
}
void main() {
 int size = N * sizeof(float);
 int wsize = (2 * RADIUS + 1) * sizeof(float);
 //allocate resources
 float *weights = (float *)malloc(wsize);
 float *in = (float *)malloc(size);
 float *out = (float *)malloc(size);
 initializeWeights(weights, RADIUS);
 initializeArray(in, N);
 float *d_weights; cudaMalloc(&d_weights, wsize);
 float *d_in; cudaMalloc(&d_in, size);
 float *d_out; cudaMalloc(&d_out, size);
 cudaMemcpy(d_weights, weights, wsize, cudaMemcpyHostToDevice);
 cudaMemcpy(d_in, in, size, cudaMemcpyHostToDevice);
 applyStencil1D<<<N/512, 512>>>(RADIUS, N-RADIUS, d_weights, d_in, d_out);
 cudaMemcpy(out, d_out, size, cudaMemcpyDeviceToHost);
 //free resources
 free(weights); free(in); free(out);
 cudaFree(d_weights); cudaFree(d_in); cudaFree(d_out);
}

__global__ void applyStencil1D(int sIdx, int eIdx, const float *weights, float *in, float *out) {
 int i = sIdx + blockIdx.x*blockDim.x + threadIdx.x;
 if (i < eIdx) {
 out[i] = 0;
 //loop over all elements in the stencil
 for (int j = -RADIUS; j <= RADIUS; j++) {
 out[i] += weights[j + RADIUS] * in[i + j];
 }
 out[i] = out[i] / (2 * RADIUS + 1);
 }
}
The Parallel Implementation

```c
void main() {
  int size = N * sizeof(float);
  int wsize = (2 * RADIUS + 1) * sizeof(float);
  // allocate resources
  float *weights = (float *)malloc(wsize);
  float *in = (float *)malloc(size);
  float *out = (float *)malloc(size);
  initializeWeights(weights, RADIUS);
  initializeArray(in, N);
  float *d_weights;  cudaMalloc(&d_weights, wsize);
  float *d_in;       cudaMalloc(&d_in, size);
  float *d_out;      cudaMalloc(&d_out, size);
  cudaMemcpy(d_weights, weights, wsize, cudaMemcpyHostToDevice);
  cudaMemcpy(d_in, in, size, cudaMemcpyHostToDevice);
  applyStencil1D<<<N/512, 512>>>(RADIUS, N-RADIUS, d_weights, d_in, d_out);
  cudaMemcpy(out, d_out, size, cudaMemcpyDeviceToHost);
  // free resources
  free(weights); free(in); free(out);
  cudaFree(d_weights); cudaFree(d_in); cudaFree(d_out);
}
```

```c
__global__ void applyStencil1D(int sIdx, int eIdx, const float *weights, float *in, float *out) {
  int i = sIdx + blockIdx.x*blockDim.x + threadIdx.x;
  if (i < eIdx) {
    out[i] = 0;
    // loop over all elements in the stencil
    for (int j = -RADIUS; j <= RADIUS; j++) {
      out[i] += weights[j + RADIUS] * in[i + j];
    }
    out[i] = out[i] / (2 * RADIUS + 1);
  }
}
```
The Parallel Implementation

```c
void main() {  
    int size = N * sizeof(float);  
    int wsize = (2 * RADIUS + 1) * sizeof(float);  
    //allocate resources  
    float *weights = (float *)malloc(wsize);  
    float *in = (float *)malloc(size);  
    float *out = (float *)malloc(size);  
    initializeWeights(weights, RADIUS);  
    initializeArray(in, N);  
    float *d_weights;  cudaMalloc(&d_weights, wsize);  
    float *d_in;  cudaMalloc(&d_in, size);  
    float *d_out;  cudaMalloc(&d_out, size);  
    cudaMemcpy(d_weights, weights, wsize, cudaMemcpyHostToDevice);  
    cudaMemcpy(d_in, in, size, cudaMemcpyHostToDevice);  
    applyStencil1D<<<N/512, 512>>>(RADIUS, N-RADIUS, d_weights, d_in, d_out);  
    cudaMemcpy(out, d_out, size, cudaMemcpyDeviceToHost);  
    //free resources  
    free(weights);  free(in);  free(out);  
    cudaFree(d_weights);  cudaFree(d_in);  cudaFree(d_out);  
}
```

```c
__global__ void applyStencil1D(int sIdx, int eIdx, const float *weights, float *in, float *out) {  
    int i = sIdx + blockIdx.x*blockDim.x + threadIdx.x;  
    if (i < eIdx) {  
        out[i] = 0;  
        //loop over all elements in the stencil  
        for (int j = -RADIUS; j <= RADIUS; j++) {  
            out[i] += weights[j + RADIUS] * in[i + j];  
        }  
        out[i] = out[i] / (2 * RADIUS + 1);  
    }  
}
```

Launch a GPU thread for each element
The Parallel Implementation

void main() {
 int size = N * sizeof(float);
 int wsize = (2 * RADIUS + 1) * sizeof(float);
 //allocate resources
 float *weights = (float *)malloc(wsize);
 float *in = (float *)malloc(size);
 float *out = (float *)malloc(size);
 initializeWeights(weights, RADIUS);
 initializeArray(in, N);
 float *d_weights; cudaMalloc(&d_weights, wsize);
 float *d_in; cudaMalloc(&d_in, size);
 float *d_out; cudaMalloc(&d_out, size);
 cudaMemcpy(d_weights, weights, wsize, cudaMemcpyHostToDevice);
 cudaMemcpy(d_in, in, size, cudaMemcpyHostToDevice);
 applyStencil1D<<<N/512, 512>>>(RADIUS, N-RADIUS, d_weights, d_in, d_out);
 cudaMemcpy(out, d_out, size, cudaMemcpyDeviceToHost);
 //free resources
 free(weights); free(in); free(out);
 cudaFree(d_weights); cudaFree(d_in); cudaFree(d_out);
}

__global__ void applyStencil1D(int sIdx, int eIdx, const float *weights, float *in, float *out) {
 int i = sIdx + blockIdx.x*blockDim.x + threadIdx.x;
 if (i < eIdx) {
 out[i] = 0;
 //loop over all elements in the stencil
 for (int j = -RADIUS; j <= RADIUS; j++) {
 out[i] += weights[j + RADIUS] * in[i + j];
 }
 out[i] = out[i] / (2 * RADIUS + 1);
 }
}
void main() {
 int size = N * sizeof(float);
 int wsize = (2 * RADIUS + 1) * sizeof(float);
 //allocate resources
 float *weights = (float *)malloc(wsize);
 float *in = (float *)malloc(size);
 float *out = (float *)malloc(size);
 initializeWeights(weights, RADIUS);
 initializeArray(in, N);
 float *d_weights; cudaMalloc(&d_weights, wsize);
 float *d_in; cudaMalloc(&d_in, size);
 float *d_out; cudaMalloc(&d_out, size);

 cudaMemcpy(d_weights, weights, wsize, cudaMemcpyHostToDevice);
 cudaMemcpy(d_in, in, size, cudaMemcpyHostToDevice);
 applyStencil1D<<<N/512, 512>>>(RADIUS, N-RADIUS, d_weights, d_in, d_out);
 cudaMemcpy(out, d_out, size, cudaMemcpyDeviceToHost);

 //free resources
 free(weights); free(in); free(out);
 cudaFree(d_weights); cudaFree(d_in); cudaFree(d_out);
}

__global__ void applyStencil1D(int sIdx, int eIdx, const float *weights, float *in, float *out) {
 int i = sIdx + blockIdx.x*blockDim.x + threadIdx.x;
 if (i < eIdx) {
 out[i] = 0;
 //loop over all elements in the stencil
 for (int j = -RADIUS; j <= RADIUS; j++) {
 out[i] += weights[j + RADIUS] * in[i + j];
 }
 out[i] = out[i] / (2 * RADIUS + 1);
 }
}
void main() {
 int size = N * sizeof(float);
 int wsize = (2 * RADIUS + 1) * sizeof(float);
 //allocate resources
 float *weights = (float *)malloc(wsize);
 float *in = (float *)malloc(size);
 float *out = (float *)malloc(size);
 initializeWeights(weights, RADIUS);
 initializeArray(in, N);
 float *d_weights; cudaMalloc(&d_weights, wsize);
 float *d_in; cudaMalloc(&d_in, size);
 float *d_out; cudaMalloc(&d_out, size);
 cudaMemcpy(d_weights, weights, wsize, cudaMemcpyHostToDevice);
 cudaMemcpy(d_in, in, size, cudaMemcpyHostToDevice);
 applyStencil1D<<<N/512, 512>>>(RADIUS, N-RADIUS, d_weights, d_in, d_out);
 cudaMemcpy(out, d_out, size, cudaMemcpyDeviceToHost);
 free(weights); free(in); free(out);
 cudaFree(d_weights); cudaFree(d_in); cudaFree(d_out);
}

__global__ void applyStencil1D(int sIdx, int eIdx, const float *weights, float *in, float *out) {
 int i = sIdx + blockIdx.x*blockDim.x + threadIdx.x;
 if (i < eIdx) {
 out[i] = 0;
 //loop over all elements in the stencil
 for (int j = -RADIUS; j <= RADIUS; j++) {
 out[i] += weights[j + RADIUS] * in[i + j];
 }
 out[i] = out[i] / (2 * RADIUS + 1);
 }
}
Application Optimization Process
[Revisited]

- Identify Optimization Opportunities
 - 1D stencil algorithm

- Parallelize with CUDA, confirm functional correctness
 - `cuda-gdb`, `cuda-memcheck`

- Optimize
 - …dealing with this next
NVIDIA Visual Profiler

Timeline of CPU and GPU activity

Kernel and memcpy details
NVIDIA Visual Profiler

CUDA API activity on CPU

Memcpy and kernel activity on GPU
Detecting Low Memory Throughput

- Spend majority of time in data transfer
 - Often can be overlapped with preceding or following computation

- From timeline can see that throughput is low
 - PCIe x16 can sustain > 5GB/s
Visual Profiler Analysis

- How do we know when there is an optimization opportunity?
 - Timeline visualization seems to indicate an opportunity
 - Documentation gives guidance and strategies for tuning
 - CUDA Best Practices Guide – link on the website
 - CUDA Programming Guide – link on the website

- Visual Profiler analyzes your application
 - Uses timeline and other collected information
 - Highlights specific guidance from Best Practices
 - Like having a customized Best Practices Guide for your application
Visual Profiler Analysis

Several types of analysis are provided.

Analysis pointing out low memcpy throughput.
Online Optimization Help

Low Memcpy Throughput [997.19 MB/s avg, for memcpys accounting for 68.1% of all memcpy time]

The memory copies are not fully using the available host to device bandwidth.

Each analysis has link to Best Practices documentation
Pinned CPU Memory Implementation

```c
int main() {
    int size = N * sizeof(float);
    int wsize = (2 * RADIUS + 1) * sizeof(float);
    //allocate resources
    float *weights; cudaMallocHost(&weights, wsize);
    float *in; cudaMallocHost(&in, size);
    float *out; cudaMallocHost(&out, size);
    initializeWeights(weights, RADIUS);
    initializeArray(in, N);
    float *d_weights; cudaMalloc(&d_weights);
    float *d_in; cudaMalloc(&d_in);
    float *d_out; cudaMalloc(&d_out);
    ...
```

CPU allocations use pinned memory to enable fast memcpy

No other changes
Pinned CPU Memory Result

<table>
<thead>
<tr>
<th>Process: 8527</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thread: -1613166720</td>
</tr>
<tr>
<td>Runtime API</td>
</tr>
<tr>
<td>Driver API</td>
</tr>
<tr>
<td>[0] Tesla C2075</td>
</tr>
<tr>
<td>Context 1 (CUDA)</td>
</tr>
<tr>
<td>MemCpy (HtoD)</td>
</tr>
<tr>
<td>MemCpy (DtoH)</td>
</tr>
<tr>
<td>Compute</td>
</tr>
<tr>
<td>3.4% [1] applyStencil...</td>
</tr>
<tr>
<td>Streams</td>
</tr>
<tr>
<td>Stream 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start</td>
<td>117.622 ms</td>
</tr>
<tr>
<td>Duration</td>
<td>10.469 ms</td>
</tr>
<tr>
<td>Size</td>
<td>64 MB</td>
</tr>
<tr>
<td>Throughput</td>
<td>5.97 GB/s</td>
</tr>
</tbody>
</table>

<terminated> viper runhandler [Program] /home/david/depot/davidg-linux-sw/sw/pvt/davidg/sc11_example/stencil/run_gpu

GPU PINNED: 0.0297912 seconds, 4.50528 GBytes/s, 0.563158 GElements/s
Pinned CPU Memory Result

<table>
<thead>
<tr>
<th>Device</th>
<th>Algorithm</th>
<th>MEElements/s</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>i7-930*</td>
<td>Optimized & Parallel</td>
<td>130</td>
<td>1x</td>
</tr>
<tr>
<td>Tesla C2075</td>
<td>Simple</td>
<td>285</td>
<td>2.2x</td>
</tr>
<tr>
<td>Tesla C2075</td>
<td>Pinned Memory</td>
<td>560</td>
<td>4.3x</td>
</tr>
</tbody>
</table>

*4 cores + hyperthreading
CUDA Optimization: Execution Configuration Heuristics
Technical Specifications and Features
[Short Detour]

This is us: most GPUs on Euler are Fermi

<table>
<thead>
<tr>
<th>Technical Specifications</th>
<th>1.0</th>
<th>1.1</th>
<th>1.2</th>
<th>1.3</th>
<th>2.x</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum x- or y-dimension of a grid of thread blocks</td>
<td>65535</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum number of threads per block</td>
<td>512</td>
<td>1024</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum x- or y-dimension of a block</td>
<td>512</td>
<td>1024</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum z-dimension of a block</td>
<td>64</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Warp size</td>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum number of resident blocks per multiprocessor</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum number of resident warps per multiprocessor</td>
<td>24</td>
<td>32</td>
<td>48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum number of resident threads per multiprocessor</td>
<td>768</td>
<td>1024</td>
<td>1536</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of 32-bit registers per multiprocessor</td>
<td>8 K</td>
<td>16 K</td>
<td>32 K</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum amount of shared memory per multiprocessor</td>
<td>16 KB</td>
<td>48 KB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of shared memory banks</td>
<td>16</td>
<td>32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amount of local memory per thread</td>
<td>16 KB</td>
<td>512 KB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant memory size</td>
<td>64 KB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cache working set per multiprocessor for constant memory</td>
<td>8 KB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum number of instructions per kernel</td>
<td>2 million</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
“multiprocessor” stands for Stream Multiprocessor (what we called SM)
Blocks per Grid Heuristics

- # of blocks > # of stream multiprocessors (SMs)
 - If this is violated, then you’ll have idling SMs

- # of blocks / # SMs > 2
 - Multiple blocks can run concurrently on a multiprocessor
 - Blocks that aren’t waiting at a __syncthreads() keep the hardware busy
 - Subject to resource availability – registers, shared memory

- # of blocks > 100 to scale to future devices
 - Blocks waiting to be executed in pipeline fashion
 - To be on the safe side, 1000’s of blocks per grid will scale across multiple generations
 - If you bend backwards to meet this requirement maybe GPU not the right choice
Threads Per Block Heuristics

- Choose threads per block as a multiple of warp size
 - Avoid wasting computation on under-populated warps
 - Facilitates coalescing

- Heuristics
 - Minimum: 64 threads per block
 - Only if multiple concurrent blocks
 - 192 or 256 threads a better choice
 - Usually still enough registers to compile and invoke successfully
 - This all depends on your computation, so experiment!

- Use the \texttt{nvvp} profiler to understand how many registers you used, what bandwidth you reached, etc.
Occupancy

- In CUDA, executing other warps is the only way to hide latencies and keep the hardware busy.

- Occupancy = Number of warps running concurrently on a SM divided by maximum number of warps that can run concurrently.
 - When adding up the number of warps, they can belong to different blocks.

- Can have up to 48 warps managed by one Fermi SM.
 - For 100% occupancy your application should run with 48 warps on an SM.

- Many times one can’t get 48 warps going due to hardware constraint.
 - See next slide.
CUDA Optimization: A Balancing Act

- **Hardware constraints:**
 - Number of registers per kernel
 - 32K per multiprocessor, partitioned among concurrent threads active on the SM
 - Amount of shared memory
 - 16 or 48 KB per multiprocessor, partitioned among SM concurrent blocks

- **Use** `-maxrregcount=N` **flag on nvcc**
 - N = desired maximum registers / kernel
 - At some point “spilling” into local memory may occur
 - Might not be that bad, there is L1 cache that helps to some extent

- Recall that you cannot have more than 8 blocks executed by one SM
CUDA GPU Occupancy Calculator

Click Here for detailed instructions on how to use this occupancy calculator.
For more information on NVIDIA CUDA, visit http://developer.nvidia.com/cuda

Your chosen resource usage is indicated by the red triangle on the graphs.
The other data points represent the range of possible block sizes, register counts, and shared memory allocation.

Varying Block Size

Varying Register Count

Varying Shared Memory Usage

CUDA Occupancy Calculator
Version 2.1

Google: “cuda occupancy calculator”
Occupancy != Performance

- Increasing occupancy does not necessarily increase performance
 - If you want to read more about this, there is a Volkov paper on class website
 - What comes to the rescue is the Instruction Level Parallelism (ILP) that becomes an option upon low occupancy

HOWEVER...

- Low-occupancy multiprocessors are likely to have a hard time when it comes to hiding latency on memory-bound kernels
 - This latency hiding draws on Thread Level Parallelism (TLP); i.e., having enough threads (warps, that is) that are ready for execution
Parameterize Your Application

● Parameterization helps adaptation to different GPUs

● GPUs vary in many ways
 ● # of SMs
 ● Memory bandwidth
 ● Shared memory size
 ● Register file size
 ● Max. threads per block
 ● Max. number of warps per SM

● You can even make apps self-tuning (like FFTW and ATLAS)
 ● “Experiment” mode discovers and saves optimal configuration
There are two types of runtime math operations

- **__funcf()**: direct mapping to hardware ISA
 - Fast but lower accuracy (see programming guide for details)
 - Examples: __sinf(x), __expf(x), __powf(x,y)

- **funcf()**: compile to multiple instructions
 - Slower but higher accuracy
 - Examples: sinf(x), expf(x), powf(x,y)

The `-use_fast_math` compiler option forces every `funcf()` to compile to `__funcf()`
FP Math is Not Associative!

- In symbolic math, \((x+y)+z == x+(y+z)\)

- This is not necessarily true for floating-point addition

- When you parallelize computations, you likely change the order of operations
 - Round off error propagates differently

- Parallel results may not exactly match sequential results
 - This is not specific to GPU or CUDA – inherent part of parallel execution

- Beyond this associativity issue, there are many other variables (hardware, compiler, optimization settings) that make sequential and parallel computing results be different
CUDA Optimization: Wrap Up…
Performance Optimization

[Wrapping Up…]

- We discussed many rules and ways to write better CUDA code

- The next several slides sort this collection of recommendations based on their importance

- Writing CUDA software is a craft/skill that is learned
 - Just like playing a game well: know the rules and practice
 - A list of high, medium, and low priority recommendations wraps up discussion on CUDA optimization
 - For more details, check the CUDA C Best Practices Guide:

Writing CUDA Software: High-Priority Recommendations

1. To get the maximum benefit from CUDA, focus first on finding ways to parallelize sequential code.

2. Use the effective bandwidth of your computation as a metric when measuring performance and optimization benefits.

3. Minimize data transfer between the host and the device, even if it means running some kernels on the device that do not show performance gains when compared with running them on the host CPU.

Writing CUDA Software: High-Priority Recommendations

4. Strive to have aligned and coalesced global memory accesses

5. Minimize the use of global memory. Prefer shared memory access where possible (consider tiling as a design solution)

6. Avoid different execution paths within the same warp
1. Accesses to shared memory should be designed to avoid serializing requests due to bank conflicts.

2. To hide latency arising from register dependencies, maintain sufficient numbers of active threads per multiprocessor (i.e., sufficient occupancy).

3. The number of threads per block should be a multiple of 32 threads, because this provides optimal computing efficiency and facilitates coalescing.

4. Use the fast math library whenever speed is very important and you can live with a tiny loss of accuracy

5. Prefer faster, more specialized math functions over slower, more general ones when possible
Writing CUDA Software: Low-Priority Recommendations

1. For kernels with long argument lists, place some arguments into constant memory to save shared memory

2. Use shift operations to avoid expensive division and modulo calculations

3. Avoid automatic conversion of doubles to floats