Advanced Computing
for Engineering Applications

Dan Negrut

Simulation-Based Engineering Lab

Wisconsin Applied Computing Center

Department of Mechanical Engineering

Department of Electrical and Computer Engineering
University of Wisconsin-Madison

Milano
18-23 November
2013

What We Covered Yesterday...

GPU computing w/ thrust

Parallel computing with OpenMP

Parallel regions

Work sharing
Parallel for
Parallel sections
Parallel tasks

Scheduling
Data scoping

Acknowledgments

Parts of MPI material covered draws on a set of slides made available by
the Irish Centre for High-End Computing (ICHEC) -
These slides will contain “ICHEC” at the bottom

In turn, the ICHEC material was based on the MPI course developed by Rolf Rabenseifner at
the High-Performance Computing-Center Stuttgart (HLRS), University of Stuttgart in
collaboration with the EPCC Training and Education Centre, Edinburgh Parallel Computing
Centre, University of Edinburgh

Individual or institutions are acknowledged at the bottom of the slide, like
[A. Jacobs]

MPI: Textbooks, Further Reading...

MPI: A Message-Passing Interface Standard (1.1, June 12, 1995)
MPI-2: Extensions to the Message-Passing Interface (July 18,1997)

MPI: The Complete Reference , Marc Snir and William Gropp et al., The MIT Press, 1998
(2-volume set)

Using MPI: Portable Parallel Programming With the M essage-Passing Interface and
Using MPI-2: Advanced Features of the Message-Passing Interface. William Gropp,
Ewing Lusk and Rajeev Thakur, MIT Press, 1999 — also available in a single volume ISBN
026257134X.

Parallel Programming with MPI , Peter S. Pacheco, Morgan Kaufmann Publishers, 1997 -
very good introduction.

Parallel Programming with MPI , Neil MacDonald, Elspeth Minty, Joel Malard, Tim
Harding, Simon Brown, Mario Antonioletti. Training handbook from EPCC

[ICHEC]

Shared Memory Systems

Memory resources are shared among processors
Typical scenario, on a budget: one node with four CPUs, each with 16 cores

Relatively easy to program since there is a single unified memory space

Two issues:
Scales poorly with system size due to the need for cache coherence
Most often, you need more memory than available on the typical multi-core node

Example:

Symmetric Multi-Processors (SMP)
Each processor has equal access to RAM

Traditionally, this represents the hardware setup that supports OpenMP-enabled

parallel computing
5

[A. Jacobs]

Distributed Memory Systems

[A. Jacobs]

Individual nodes consist of a CPU, RAM, and a network interface
A hard disk is typically not necessary; mass storage can be supplied using NFS

Information is passed between nodes using the network

No cache coherence and no need for special cache coherency hardware

Software development: more difficult to write programs for distributed
memory systems since the programmer must keep track of memory usage

Traditionally, this represents the hardware setup that supports MPI-enabled
parallel computing

Overview of Large Multiprocessor
Hardware Configurations

Larger
multiprocessors

Shared address Distributed
space address space

Symmetric shared

memory (SMP) Distributed shared Commodity clusters: Custom
Examples: IBM eserver, memaory (DSM) Beowulf and others cluster
SUN Sunfire
Cac;‘:NCSm?““ Uniform cluster:
; IBM BlueGene
SGI Origin/Altix u
Euler
] Constellation cluster of
Noncache coherent:
Cray T3E, X1 DSMs or SMPs
’ SGI Altix, ASC Purple

£ 2007 Eleavier, Inc. All rights resanved.

Courtesy of Elsevier, Computer Architecture, Hennessey and Patterson, fourth edition

Euler
~ Hardware Configurations ~

Hardware Relevant in the Context of MPI

Two Components of Euler that are Important

CPU: AMD Opteron 6274 Interlagos 2.2GHz
16-Core Processor (four CPUs per node 64 cores/node)
8 x 2MB L2 Cache per CPU
2 x 8MB L3 Cache per CPU
Thermal Design Power (TDP): 115W

HCA: 40Gbps Mellanox Infiniband interconnect

Bandwidth comparable to PCle2.0 x16 (~32Gbps), yet the latency is rather poor
(~1microsecond)

Ends up being the bottleneck in cluster computing

MPI: The 30,000 Feet Perspective

The same program is launched for execution independently on a
collection of cores

Each core executes the program

What differentiates processes is their rank: processes with different
ranks do different things (“branching based on the process rank”)
Very similar to GPU computing, where one thread did work based on its thread index

10

The Message-Passing Model

One starts many process on different cores but on each core the process is
spawned by launching the same program
Process definition [in ME759]: a program counter and address space

Message passing enables communication among processes that have
separate address spaces

Interprocess communication typically of

Synchronization, followed by...
... movement of data from one process’s address space to another’s

Execution paradigm embraced in MPI: Single Program Multiple Data
(SPMD)

11

The Message-Passing Programming Paradigm

Sequential Programming Paradigm

—— memaor
y A processor may

run many processes

program |—— Processor/Process

Message-Passing Programming Paradigm

— Distributed memory

program| [program| [program program— Parallel processors

communication network
12

[ICHEC]

Fundamental Concepts:
Process/Processor/Program

Our View: A process is a program performing a task on a processor

Each processor/process in a message passing program runs a
Instance/copy of a program:
Written in a conventional sequential language, e.g., C or Fortran,

The variables of each sub-program have the same name but different
locations (distributed memory) and different data!

Communicate via special send & receive routines (message passing)

program| |program| |[program program

communication network
13

[ICHEC]

A First MPI Program

&(()

&(* &(*+&& +-1)
&(* 0 &(*+&& +-1)

#$
1 22 3 4 4
1 567
8
49 4
1 (9 56 26467
8
&(;: 0

14

[A. Snavely]

Program Output

[negrut@euler04 CodeBits]$ mpiexec -np 8 ./a.out
| am a worker:
| am a worker:
| am a worker:
| am a worker:
| am a worker:

euler04 (rank=1/7)
euler04 (rank=5/7)
euler04 (rank=6/7)
euler04 (rank=3/7)
eulerO4 (rank=4/7)

| am the master: euler04

| am a worker:
| am a worker:

euler04 (rank=2/7)
eulerO4 (rank=7/7)

[negrut@euler04 CodeBits]$
[negrut@euler04 CodeBits]$

15

Why Care about MPI?

Today, MPI is what enables supercomputers to run at PFlops rates
Some of these supercomputers might use GPU acceleration though

Examples of architectures relying on MPI for HPC:
IBM Blue Gene L/P/Q (Argonne National Lab — “Mira”)
Cray supercomputers (Oakridge National Lab — “Titan”, also uses K20X GPUS)

MPI has FORTRAN, C, and C++ bindings — widely used in Scientific Computing

16

MPI Is a Standard

MPI is an API for parallel programming on distributed memory systems. Specifies
a set of operations, but says nothing about the implementation
MPI is a standard

Popular because it many vendors support (implemented) it, therefore code that
implements MPI-based parallelism is very portable

One of the early common implementations: MPICH

The CH comes from Chameleon, the portability layer used in the original MPICH to
provide portability to the existing message-passing systems

OpenMPI: a new kid on the block, joint effort of three or four groups (Los Alamos,
Tennessee, Indiana University, Europe)

17

Where Can We Use Message Passing?

Message passing can be used wherever it is possible for processes to
exchange messages:

Distributed memory systems
Networks of Workstations

Even on shared memory systems <«——

18

MPI vs. CUDA

When would you use CPU/GPU computing and when would you use MPI-based
parallel programming?

Use CPU/GPU
If your data fits the memory constraints associated with GPU computing
You have parallelism at a fine grain so that you the SIMD paradigm applies

Example:
Image processing

Use MPI-enabled parallel programming

If you have a very large problem, with a lot of data that needs to be spread out across several
machines

Example:
Solving large heterogeneous multi-physics problems

In large scale computing the future likely to belong to heterogeneous architecture

A collection of CPU cores that communicate through MPI, each or which farming out
work to an accelerator (GPU)
19

MPI:. A Second Example Application

Example out of Pacheco’s book:
“Parallel Programming with MPI”
Good book, newer edition available

4 20

MPI:. A Second Example Application

[Cntd.]

1%

4 1 4
4 > 1 4
4 1 4
4 1 4
23 4 1 4
1"33% 4 1 4
&'(< 4 1 4
&(()) 44 < &'(
&'(* &'(*+&& ,+-./) 44
&(* 0 &(*+&& ,+-./) 44 ; > 1
1 =23
4 * 4
1 A 1 6=
23
4 B c" D73D 4
&'(< C" &'(*EF- &'(*+&& ,+-./
8
4 223 4
1 2" CcC
&'(- "33 &'(*EF- &'(* +&& ,+-./)
1 67
8
8
&(; O 4< 9 &
3

21

Program Output

[negrut@euler CodeBits]$ mpiexec -np 8 ./greetingsMPl.exe
Greetings from process 1!

Greetings from process 2!

Greetings from process 3!

Greetings from process 4!

Greetings from process 5!

Greetings from process 6!

Greetings from process 7!

[negrut@euler CodeBits]$

22

MPI, a Third Example:
Approximating .

Numerical Integration: Midpoint rule

23

MPI, a Third Example:

Approximating

Use 4 MPI processes (rank 0 through 3)
In the picture, n=13

Sub-intervals are assigned to ranks in a
round-robin manner

Rank 0: 1,5,9,13

Rank 1: 2,6,10

Rank 2: 3,7,11

Rank 3: 4,8,12
Each rank computes the area in its
associated sub-intervals

IS used to sum the areas
computed by each rank yielding final
approximation to

[T. Heyn]

24

Code for Approximating m

44 8&('(5/1 1
44

1%

0
> '#G/H 2 ? "@"GI#IG?GSIKI?#?3@I#I@?
> L
1&'(&FM '-+*N<<+- OF&N%

&CC))

&(* 0 &(*+&& +-1) 0
&(* &(*+&& ,+-1)
&(A)

E 1

25

Code [Cntd.]

1 223
44 N > 1 53P
44
1 #0QQ #
23
2 19
8
&(R) " &((OH 3 &(*+&& ,+-./
1 3
2"34 >
233

1 2 C" 2 C20
L2 > : 3G
C2 @34 "3CLL

8
2
&(-)) " &(/MH+BR.N &(<B& 3 &
1 223
L
8
&(; O
3

Data type we are
moving around

Reduce through a
“sum” operation

Root process, it ends
up storing the result

(*+&& +-.]

N 1> : '(#G/H

How many instances of this
data type are moved around

Partial contribution

of “this” process | stores the result

Where the reduce operatioh

26

Broadcast

[MPI function used in Example]

A one-to-many communication.

Collective Communications

Collective communication routines are higher level routines

Several processes are involved at a time

May allow optimized internal implementations, e.g., tree
based algorithms

Require O(log(N)) time as opposed to O(N) for naive implementation

28

[ICHEC]

Reduction Operations

[MPI function used in Example]

[ICHEC]

Combine data from several processes to produce a single result

15

300

29

Barriers

[ICHEC]

Used implicitly or explicitly to synchronize processes

30

MPI, Practicalities

MPI on Euler

[Selecting MPI Distribution]

What's available: OpenMPI, MVAPICH, MVAPICH2

OpenMPI is default on Euler
This is the only one we’ll support in ME759

To load OpenMPI environment variables:
(This should have been done automatically)

S 4 4

32

[A. SeidI]

MPI on Euler:
[Compiling MPI Code via Cmake]

F'NO/ *&FWN * .(OW ;.FA< S &'(* .(OW ;.FA<8
S &'(* (O*.B/IN 'FHES

F'NO/ *&FWN *MM *+&'(.N ;.FA< S &'(*MM *+&(N ;.FA<8
F"NO/ *&FWN *MM .(OW ;.FA< S &'(*MM .(OW ;.F A<8
S &'(*MM (O*.B/N 'FHES

& 1*& P
P TN-<(+O#$
< 1 U With the template
U &N@:
(1 <RN. >
(B
NL &
>
L >
> S &(*MM .(R-F- (N<8
1 &'(-NVB(-N/
F'NO/ *&FWN * *+&'(.N :.FA< S &'(* *+&'(.N : FA<S8 Without the template

14

Replaces include(SBELUtils.cmakk)
and enable_mpi_support() above

[A. Seidl]

33

MPI on Euler:
[Compiling MPI Code by Hand]

Most MPI distributions provide wrapper scripts named mpicc
O MpICXX

Addsin-L, -I , -l , etc. flags for MPI
Passes any options to your native compiler (gcc)
Very similar to what did for CUDA — it's a compile driver...

34

[A. SeidI]

(Y X)
‘Y X
o0
O
Running MPI| Code on Euler
mpiexec [-np #] [-machinefile file] <program> [<args>]
Number of processors. List of hostnames to use. Your program and its
Optional if using a Inside Torque, this file is arguments
machinefile at $PBS _NODEFILE

The machinefile/nodefile is required for multi-node jobs with the version of
OpenMPI on Euler

-np will be set automatically from the machinefile; can select lower, but not higher

See the mpiexec manpage for more options

35

[A. SeidI]

Example

[A. Seidi]

SP > (: 2%5 2@5 9 26533
P>59 1 U>"GH@J
P >5U>"G#@J

3KS S'R<+,+-WI/(-
3KS L : 1 S'R<O+/N;(.N 4
2 2% "#'3@3JJI?GHHIK 3 I$#H3H

3KS L : "J: 1 S'R<O+/N;(.N 4
"“J?2#"#'3@3JJI?GI@GG " GH@33"

3KS L : $: 1 S'R<O+/N;(.N 4
$2# "#'3@33JI?GI"?I #"K"IJ?

3KS L : @: 1 S'R<O+/N;(.N 4
@ ?#"#"'3@3JJJ?J3G$G @ J33H3@

3KS L : #: 1 S'R<O+/N;(.N 4
24 "#'3@3JJJ?JIK$S K I'G3J3

3KS 4
" "H#H'3@33JI?G?@7?K "G "J??7?3

36

Compiling MPI Code, Known Issue...

Why do | get a compilation error "catastrophic error: #error

directive: SEEK _SET is #defined but must not be for the C++

binding of MPI " when | compile C++ application?
Define the &'(*E (AO+-N *MM <NNW macro at compilation stage to avoid this issue.
For instance,
$ mpicc -DMPICH_IGNORE_CXX_SEEK

Why?

There are name-space clashes between stdio.h and the MPI C++ binding. MPI
standard requires SEEK_SET SEEK_CURand SEEK_ENDhames in the MPI
namespace, but stdio.h defines them to integer values. To avoid this conflict make
sure your application includes the mpi.h header file before stdio.h or

lostream.h or undefine SEEK_SET SEEK_CURand SEEK_ENDnames before
including mpi.h .

37

MPI Nuts and Bolts

Goals/Philosophy of MPI

MPI's prime goals
Provide a message-passing interface for parallel computing
Make source-code portability a reality
Provide a set of services (building blocks) that increase developer’s productivity

The philosophy behind MPI:
Specify a standard and give vendors the freedom to go about its implementation
Standard should be hardware platform & OS agnostic — key for code portability

39

The Rank, as a Facilitator for

Data and Work Distribution

To communicate together MPI processes need identifiers:

rank = identifying number

Work distribution decisions are based on the rank

Helps establish which process works on which data
Just like we had thread and block indices in CUDA

myrank=0 myrank=1 myrank=2
00000
data data data

program

program

program

program

communication network
[ICHEC]

40

Message Passing

Messages are packets of data moving between different processes
Necessary information for the message passing system:

sending process + receiving process }i.e., the two “ranks”
source location + destination location

source data type + destination data type 1

source data size + destination buffer size

O

communication network
S\

program

41

[ICHEC]

MPI. An Example Application

[From previous lecture]

8 4

1%

4
4
4
4
23 4
1"33% 4
&'(< 4
&((C)) 44 <
&'(* &'(*+&& ,+-./)
&(* 0 &(*+&& ,+-./)
1 =23
4 * 4
1 A 1
23
4 B c" D73D
&'(< C" &'(*EF-
8
4 223 4
1 2" CcC
&'(- "33 &'(*EF-
1 67
8
8
&(; O 4< 9 &
3
4

&(

44 ;

&'(*

D D D D iy e

44 ;

&(*+8&& +-./

+&& ,+-.1)

42

Program Output

[negrut@euler CodeBits]$ mpiexec -np 8 ./greetingsMPl.exe
Greetings from process 1!

Greetings from process 2!

Greetings from process 3!

Greetings from process 4!

Greetings from process 5!

Greetings from process 6!

Greetings from process 7!

[negrut@euler CodeBits]$

43

Communicator MPI_COMM_WORLD

[ICHEC]

All processes of an MPI program are members of the default
communicator &'(*+&& ,+-./

&'(*+&& ,+-./ IS a predefined handle in mpi.h

Each process has its own rank in a given communicator:
starting with O &'(*+&& ,+-./

ending with (size-1) @ @ @
@ @p ©

You can define a new communicator in case you find it useful

Use &'(* call. Example creates the communicator /[FO< *+&& ,+-./

&'(* &'(*+&& ,+-./ 9) IFO< *+&& ,+-./

44

000
0000
0000
00
MPl Comm create T

Synopsis

&'(* &'(* &'(A &'(* 9

Input Parameters

- communicator (handle)
- subset of the family of processes making up the (handle)

Output Parameter
- new communicator (handle)

45

Point-to-Point Communication

Simplest form of message passing

One pProcess sends a message to another Process
&'(<
&(-

Sends and receives can be

Blocking
Non-blocking

More on this shortly 46

Point-to-Point Communication

Communication between two processes
Source process sends message to destination process
Communication takes place within a communicator, e.g., /FO< *+&& ,+-./

Processes are identified by their ranks in the communicator

FO< *+&& ,+-./

@ @ @ r1|1TeHS‘sage (communicator)
@ @ \@destination

source @

a7

[ICHEC]

The Data Type

A message contains a number of elements of some particular data type

MPI data types:
Basic data type
Derived data types — more on this later

Data type handles are used to describe the type of the data moved around

Example: message with 5 integers
2345 | 654 |96574| -12 | 7676

48

[ICHEC]

| "4 $
% &#' $
(&)
%)* | "# $
%)* % &#' $
%) *
%)* (&)
+(&"
& ,(*
(&) &,(*
np *
2345 | 654 |96574| -12 | 7676
Example: _
count=5 int arr[5]

datatype=MPI_INT

[ICHEC]

49

MPI_Send & MPI_Recv:
The Eager and Rendezvous Flavors

If you send small messages, the content of the buffer is sent to the receiving
partner immediately
Operation happens in “eager mode”

If you send a large amount of data, the sender function waits for the receiver to
post a receive before sending the actual data of the message

Why this eager-rendezvous dichotomy?
Because of the size of the data and the desire to have a safe implementation

If you send a small amount of data, the MPI implementation can buffer the content and actually carry
out the transaction later on when the receiving process asks for data

Can’t play this trick if you attempt to move around a huge chunk of data though
50

MPI_Send & MPI_Recv:
The Eager and Rendezvous Flavors

NOTE: Each implementation of MPI has a default value (which might change
at run time) beyond which a larger &'(< stops acting “eager”

The MPI standard doesn’t provide specifics
You don’t know how large is too large...

Does it matter if it's Eager or Rendezvous?
In fact it does, sometimes the code can hang — example to come

Remark: In the message-passing paradigm for parallel programming you'll
always have to deal with the fact that the data that you send needs to “live”
somewhere during the send-receive transaction

51

MPIl Send & MPI_Recv:
Blocking vs. Non-blocking

Moving away from the Eager vs. Rendezvous modes they only concern
the MP1_Send and MPI_Recv pair

Messages can be sent with other vehicles than plain vanilla MPI_Send

The class of send-receive operations can be classified based on whether
they are blocking or non-blocking

Blocking send: upon return from a send operation, you can modify the content of the buffer in
which you stored data to be sent since a copy of the data has been sent

Non-blocking: the send call returns immediately and there is no guarantee that the data has

actually been transmitted upon return from send call

Take home message: before you modify the content of the buffer you better make sure (through a MPI status
call) that the send actually completed

52

Example: Send & Recelve
Non-blocking Alternative: MPI _Isend

If non-blocking, the data “lives” in your buffer — that's why it's not safe to
change it since you don’t know when transaction was closed
This typically realized through a &'((

“I" stands for “immediate”

NOTE: there is another way for providing a buffer region but this alternative is
blocking
Realized through &'(R

“B” stands for “buffered”

The problem here is that *you* need to provide this additional buffer that stages the transfer
Interesting question: how large should *that* staging buffer be?

Adding another twist to the story: if you keep posting non-blocking sends that are not matched

by corresponding “&'(- " operations, you are going to overflow this staging buffer
53

Example: Send & Recelve
Blocking Options (several of them)

The plain vanilla MPI_Send & MPI_Recieve pair is blocking
It's safe to modify the data buffer upon return

The problem with plain vanilla:
1: when sending large messages, there is no overlap of compute & data movement

This is what we strived for when using “streams” in CUDA

2: if not done properly, the processes executing the MPI code can hang

There are several other flavors of send/receive operations, to be discussed
later, that can help with concerns 1 and 2 above

54

The Mechanics of P2P Communication:
Sending a Message

&(< >1 &(/ &(*

> 1 Is the starting point of the message with elements, each
described with

IS the rank of the destination process within the communicator

IS an additional nonnegative integer piggyback information,
additionally transferred with the message

The can be used to distinguish between different messages
Rarely used

55

[ICHEC]

The Mechanics of P2P Communication:
Recelving a Message

&'(- >1 &(/
&'(* &'(<

>1/ / describe the receive buffer

Receiving the message sent by process with rank In
Only messages with matching are received

Envelope information is returned in the &'(< object

56

[ICHEC]

000
MPI_Recv: 3
The Need for an MPI_Status Argument 5
The &'(< object returned by the call settles a series of questions:

The receive call does not specify the size of an incoming message, but only an upper bound

If multiple requests are completed by a single MPI function, a distinct error code may need to
be returned for each request

The source or tag of a received message may not be known if wildcard values were used in
a receive operation

57

The Mechanics of P2P Communication:
Wildcarding

Receiver can wildcard

To receive from any source — = &'(FOX <+B-*N

To receive from any tag — = &'(FOX HFA

Actual source and tag returned in receiver’s argument

58

[ICHEC]

The Mechanics of P2P Communication:
Communication Envelope

From,, source
Envelope information is returned } tag

(rank)

0\

from MPI_RECV in

destination rank

. / To:
&'(<+B-*/
&'(HFA

. . Y\

via &'(A item-1

I item-2
.tem%—i;

item-4

item-n

—7

elements

Sl & (< &(/

[ICHEC]

59

The Mechanics of P2P Communication:

Some Rules of Engagement

[ICHEC]

For a communication to succeed:
Sender must specify a valid destination rank
Receilver must specify a valid source rank
The communicator must be the same
Tags must match
Message data types must match

Recelver’s buffer must be large enough

60

Blocking Type:
Communication Modes

Send communication modes:

Synchronous send &'(<<NO/
Buffered [asynchronous] send &'(R<NO/
Standard send &'(<NO/
Ready send &'(-<NO/

Receiving all modes &'(-N*T

61

[ICHEC]

Cheat Sheet, Blocking Options

% |/
%0 $ &0 /1 2% $ 3%
11
"20 /1 2°$
5 1 3 3 g™
%0 $ %
0
0 0 $/ % 3 3 {$/7
01 6
1/1 2% $/ 4 5%

[ICHEC]

62

Blocking Type:
Communication Modes

Send communication modes:

Synchronous send &'(<<NO/
Buffered [asynchronous] send &'(R<NO/
Standard send &'(<NO/
Ready send &'(-<NO/

Receiving all modes &'(-N*T

63

[ICHEC]

Cheat Sheet, Blocking Options

%

%0 $ &0 /1 28 $ 3%
11
"20 /1 2°$
5 1 3 3 R
83)
v /
.0 9"3
% $ 209 2: /| $
I $ 3 01 6 1 /7
1/1 2% $/ 4 5%

64

[ICHEC]

1) Synchronous Sending in MPI
2) Buffered Sending in MPI

Synchronous with MPI_Ssend
In synchronous mode, a send will not complete until a matching
receive is posted.
The sender has to wait for a receive to be posted
No buffering of data
Used for ensuring the code is healthy and doesn’t rely on buffering

Buffered with MPI_Bsend

Send completes once message has been buffered internally by MPI
Buffering incurs an extra memory copy
Does not require a matching receive to be posted

May cause buffer overflow if many bsends and no matching receives
have been posted yet

65

[A. Snavely]

3) Standard Sending in MPI
4) Ready Sending in MPI

Standard with MPI_Send

Up to the MPI implementation to decide whether to do rendesvous
or eager, for performance reasons
NOTE: If it does rendezvous, in fact the behavior is that of MPI_SSend

Very commonly used

Ready with MPIl_Rsend

Will work correctly only if the matching receive has been posted

Can be used to avoid handshake overhead when program is
known to meet this condition

Rarely used, can cause major problems

66

[A. Snavely]

Most Important Issue: Deadlocking

Deadlock situations: appear when due to a certain
sequence of commands the execution hangs

D K

0 @

K

L

[A. Snavely]

Deadlocking, Another Example

&'(<

can respond in eager or rendezvous mode

Example, on a certain machine running MPICH v1.2.1:

&'(<
&(-

[A. Snavely]

&'(<
&(-

68

Avoiding Deadlocking

Easy way to eliminate deadlock is to pair &'(<
and &'(- operations the right way:

L

Conclusion: understand how the implementation works
and what its pitfalls/limitations are

69

[A. Snavely]

Example

Always succeeds, even if no buffering is done

1 223
&(<
&'(-
8
1 22
&'(-
&(<

70

Example

Will always deadlock, no matter the buffering mode

1 223
&(-
&(<
8
1 22"
&(-
&(<

71

Example

Only succeeds if message is at least one of the transactions
IS small enough and an “eager” mode is triggered

1 223
&(<
&(-
8
1 22"
&(<
&(-

72

Concluding Remarks, Blocking Options

Standard send (MPI_SEND)
minimal transfer time
may block due to synchronous mode
risks with synchronous send

Synchronous send (MPI_SSEND)
risk of deadlock
risk of serialization
risk of waiting idle time
high latency / best bandwidth

Buffered send (MPI_BSEND)
low latency / bad bandwidth

Ready send (MPI_RSEND)

use never, except you have a 200% guarantee that Recv is already
called in the current version and all future versions of your code
73

[ICHEC]

Technicalities, Loose Ends:
More on the Buffered Send

Relies on the existence of a buffer, which is set up through a call
&'(R 11 > 11 0

A bsend is a local operation. It does not depend on the occurrence of a
matching receive in order to complete

If a bsend operation is started and no matching receive is posted, the
outgoing message is buffered to allow the send call to complete

Return from an & (R does not guarantee the message was sent

Message may remain in the buffer until a matching receive is posted

74

Technicalities, Loose Ends:
More on the Buffered Send [cntd]

Make sure you have enough buffer space available. An error occurs if the
message must be buffered and there is there is not enough buffer space

The amount of buffer space needed to be safe depends on the expected peak of
pending messages. The sum of the sizes of all of the pending messages at that
point plus (MPI_BSEND_ OVERHEAD*number_of messages) should be
sufficient

&'(R lowers bandwidth since it requires an extra memory-to-memory copy
of the outgoing data

The &' (R 11 subroutine provides MPI a buffer in the user's
memory. This buffer is used only by messages sent in buffered mode, and only
one buffer is attached to a process at any time

75

Technicalities, Loose Ends:
Message Order Preservation

Rule for messages on the same connection; i.e., same
communicator, source, and destination rank:

Messages do not overtake each other
True even for non-synchronous sends

© 7 @

Hil]

@ G

()

15

If both receives match both messages, then the order is preserved

[ICHEC]

76

Read This for Assignment 11

[ICHEC]

Write a program according to the time-line diagram:
process 0 sends a message to process 1 (ping)

after receiving this message, process 1 sends a message back to
process 0 (pong)

Repeat this ping-pong with a loop of length 50
Add timing calls before and after the loop

For timing purposes, you might want to use
> &I(’

&'(, returns a wall-clock time in seconds

At process 0, print out the transfer time in seconds
Might want to use a log scale

_U

o
_U

[EEN

time

)

poﬂg

VLA

77

More on Timing

[Useful, for Assignment 11]

>
2 &,
11 >
2 &(,
1 H 61 7
3

Resolution is typically 1E-3 seconds

Time of different processes might actually be synchronized, controlled by
the variable &'(,H(&N (< A.+RF.

78

More on Timing

[Useful, for Assignment 11; Cntd.]

Latency = transfer time for zero length messages
Bandwidth = message size (in bytes) / transfer time

Message transfer time and bandwidth change based on the nature of the
MPI send operation

Standard send (&'(<)
Synchronous send (&'(<)
Buffered send (&'(R)

Etc.

79

80

Non-Blocking Communications:
Motivation

Overlap communication with execution (just like w/ CUDA):

Initiate non-blocking communication
Returns Immediately
Routine name starting with MP1_1...

Do some work
“latency hiding”

Wait for non-blocking communication to complete

81

Non-blocking Send/Recelive

Syntax

&'((

&((

©O OO0 OO0 0O

>1 &'(/
&'(* &'(-P P

buf - [in] initial address of send buffer (choice)

count - [in] number of elements in send buffer (integer)
datatype - [in] datatype of each send buffer element (handle)
dest - [in] rank of destination (integer)

tag - [in] message tag (integer)

comm - [in] communicator (handle)

request - [out] communication request (handle)

>1 &'(/
&'(* &'(-P P

82

The Screenplay:
Non-Blocking P2P Communication

Non-blocking send MPI_Isend(...)

doing some other work
MPI_Wait(...)

OF

Non-blocking receive

MPI_Irecv(...)
doing some other work \
MPI_Wait(...)

IVANEY

/// = waiting until operation locally completed

83

Non-Blocking Send/Recelve

Some Tools of the Trade

Call returns immediately. Therefore, user must worry whether ...
Data to be sent is out of the send buffer before trampling on the buffer
Data to be received has finished arriving before using the content of the buffer

Tools that come in handy:

For sends and receives in flight

&'(, — blocking - you go synchronous
&'(H — non-blocking - returns quickly with status information

Check for existence of data to receive
Blocking: &'(" >
Non-blocking: &'((>

84

Waiting for isend/ireceive to Complete

Waiting on a single send
&'\(, &(-P P &'(<

Waiting on multiple sends (get status of all)

Till all complete, as a barrier
&'(, &(-P P &'(<

Till at least one completes
&'(, &'(-P P L &'(<
Helps manage progressive completions

&(, &(-P P
&(< :

85

[Alexander]

MPI Test...

Flag true means completed

&'(H &'(-P P 1 &'(<
&'(H &(-P P
&'(H &(-P P

&'(<

Like a non blocking MPI_Waitsome
&(H &(-P P
&'(<

[Alexander]

&(<

86

The Need for MPIl_Probe and MPI_Iprobe

The &'('-+RN and &'((~+RN operations allow incoming messages to
be checked for, without actually receiving them

The user can then decide how to receive them, based on the information
returned by the probe (basically, the information returned by status)

In particular, the user may allocate memory for the receive buffer,
according to the length of the probed message

87

Probe to Recelve

Probes yield incoming size

Blocking Probe, wait till match
&(" > &(* &(<

Non Blocking Probe, flag true if ready
&((> &'(* 1 &'(<

88

[Alexander]

MPI Point-to-Point Communication
~Take Away Slide~

Two types of communication:
Blocking:
Safe to change content of buffer holding on to data in the MPI send call
Non-blocking:
Be careful with the data in the buffer, since you might step on/use it too soon

MPI provides four modes for these two types
standard, synchronous, buffered, ready

89

Collective Actions

Collective Actions

MPI actions involving a group of processes

Must be called by all processes in a communicator

All collective actions are blocking

Types of Collective Actions (three of them):
Global Synchronization (barrier synchronization)
Global Communication (broadcast, scatter, gather, etc.)
Global Operations (sum, global maximum, etc.) o1

Barrier Synchronization

Syntax:
&'(R &'(*
&'(R not needed that often:

All synchronization is done automatically by the data communication
A process cannot continue before it has the data that it needs

If used for debugging
Remember to remove for production release

92

Communication Action:
Broadcast

Function prototype:

& (R >1 & (! &(*

before
bcast

e.g., root=1 ~_

* rank of the sending process (i.e., root process)

* must be given identically by all processes
[ICHEC]

MPI| Bcast

data (buffer) > data (buffer) >

3 3
: S [Ao
= broadcast A
—_— 0
Ao
Ao
v v AO

A, : any chunk of contiguous data described with MPI_Datatype and count

MPI| Bcast

&(R >11 &(/ &(*

INOUT :>11 (starting address, as usual)

IN , (number of entries in buffer)

IN ; (can be user-defined)

IN ; (rank of broadcast root)

IN , (communicator)

Broadcasts message from to all processes (including)
and must be identical on all processes

On return, contents of > 11 is copied to all processes in

Example: MP|_Bcast

Read a parameter file on a single processor and send data to all processes

1 2:"3
(N 1
&(())
&(* 0 &'(*+&& ,+-./)
&'(* &'(*+&& ,+-./) -
1 - 223
1"33%
1 21 "L
1 =20B..
1 11 67
2 1
8
1 >1 5617
&'(R) " &(;.+FH 3 &'(*+&& ,+-./
1 1 5617
&(; O

Example: MP|_Bcast
[Output]

Communication Action: see:
Gather o
Function Prototype
&'(A >1 &'(/ >1
&'(/ &(*
before B C D
e.g., root=1 gather
| |
)

after ‘ 5 f S EI

gather AB|CDE

[ICHEC]

98

MPI_Gather

data (buffer)

data

A5
=
<C
Aoo
A2
Al
< <| <
sassanoud g
| -
(D)
i -
d
©
O
<|<| <
sassanoud g

[A. Siegel]

MPI_Gather

&'(A >1 &'(/
>1 &'(/ &'(*
IN > 1 (starting address of send buffer)
IN (number of elements in send buffer)
IN (type)
OuUT >1 (address of receive buffer)
IN (n-elements for any single receive)
IN (data type of recv buffer elements)
IN (rank of receiving process)

IN (communicator)

[A. Siegel]

MPI Gather

Each process sends content of send buffer to the root process
Root receives and stores in rank order

Remarks:

Receive buffer argument ignored for all non-root processes (also recvtype, etc.)

on root indicates number of items received from each process, not total. This
IS a very common error

Exercise: Sketch an implementation of MPI| Gather using only send and
receive operations.

[A. Siegel]

[A. Siegel]

Communication Action: HE
Scatter :
Function prototype
&'(< >1 &'(/ > 1

&'(/ &'(*

before
scatter

e.g., root=1

after
scatter

104

[ICHEC]

MPI| Scatter

data (buffer)

data (buffer)

—

<

S9sSsa20.d
| -
D

=
©
&)
)

v

As

Ay

As

Ag| AL A

S9SSsa2%0.d

v

105

[A. Siegel]

MPI| Scatter

&'(<

[A. Siegel]

IN
IN
IN
OuT
IN
IN
IN
IN

000
000
o0
o
>1 &(/ >1
&(/ &'(*
> 1 (starting address of send buffer)
(number of elements sent to each process)
(type)
>1 (address of receive bufer)

(n-elements in receive buffer)
(data type of receive elements)
(rank of sending process)
(communicator)

106

MPI| Scatter

Inverse of MPI Gather

Data elements on root listed in rank order — each processor gets
corresponding data chunk after call to scatter

Remarks:

All arguments are significant on root , while on other processes only recvbuf ,
recvcount , recvtype , root, and comm are significant

107

[A. Siegel]

8

[A. Siegel]

- 2#

1
&(())
&(* 0 &'(*+&& ,+-./)
&'(* &'(*+&& ,+-./) -
4 0 2 4

2 1
1 - 223

2 1

1 23
8
&'(< &'(;.+FH
1 23 CC

1 - 22

1 uz23 U CCuU

8

&'(R &'(*+&& ,+-./
8
&(; O

3

This is interesting.

Think what's happening

here...
&(;+FH 3 &'(*+&&|+-./
617 1U% - <]

108

109

Putting Things in Perspective...

Gather: you automatically create a serial array from a distributed one

Scatter: you automatically create a distributed array from a serial one

110

Global Reduction Operations

To perform a global reduce operation across all members of a group.
d,od,od,od;o...0od,,0d,
d. = data in process rank i
single variable, or

vector
0 = associative operation
Example:

global sum or product
global maximum or minimum
global user-defined operation

Floating point rounding may depend on usage of associative law:
[(dyod;)o(dy0d;)]o[... 0 (ds, 0dg,y)]
((((((dgody)ody)od;)0...)0ds,)0dg,)

111

[ICHEC]

Example of Global Reduction
Global integer sum
Sumofall >1 values should be returned in > 1
Assume =0;
&'(- y>1) >1" &((OH &'(<B& &'(*+&& ,+-./

The resultis only placedin >1 at the root process.

[ICHEC]

112

Predefined Reduction Operation Handles

"@ Al
/]
% % |
H&
(II
1") 2
(& (| &#
&H 2 &#
(@&# (| A 3 &#
,@&# 2 A 3 &#
"@(&! All $/A//
(&! /] $/ /1 11

MPI| Reduce

before MPI_REDUCE

* inbuf A|B
* result I I I I

1

(@]
(@]
(@]

after ﬂ

root=1

AoDoGoJoM

114

[ICHEC]

Reduce Operation

processes

[A. Siegel]

data (input buffer)———»

AO | BO | CO
Al | Bl | C1
A2 | B2 | C2

Assumption: Rank 0 is the root

reduce
=

data (output buffer)

AO+A1+A2

BO+B1+B2

CO0+C1+C2

115

000
000
:O
MPI| Reduce
&'(- >1 >1
&'(! &'(+ &'(*

IN >1 (address of send buffer)

OouT >1 (address of receive buffer)

IN (number of elements in send buffer)

IN (data type of elements in send buffer)

IN (reduce operation)

IN (rank of root process)

IN (communicator)

116

[A. Siegel]

MPI| Reduce example

MPI_Reduce (sbuf,rbuf,6,MPI_INT,MPI_SUM,0,MPI_COMM_WORLD)

(31412 8][12][1]
+4k_H

(S22][5 1] 7][11]
+
211 4][41110/ 4][5]

+
(11693][1][1]

[11][161[20][22][24][18]

11 117

MPI|_Reduce, MPI_Allreduce

&'(- . result is collected by the root only

The operation is applied element-wise for each element of the
Input arrays on each processor

&'(F . result is sent out to everyone
MPI_Reduce (x, 1, 1C, MPI_INT, MPI_MAX, 0, MPI_COMM_WORLD)
i T 0 0 8

MPI_Allreduce (x, -, 10 MP|_INT, MPI_MAX, MPI_COMM_WORLD)

118

Credit: Allan Snavely

MPI _Allreduce
data (buffer)
% AQ BO CO Allreduce
3 —>
s |Al | Bl | C1
A2 | B2 | C2

[A. Siegel]

(Y X
o000
o000
eo0o
o0
O

data (buffer)

AO+A1+A2 | BO+B1+B2| CO+C1+CZ

AO+Al+A2 | BO+B1+B2| CO+C1+C4

AO+A1+A2 | BO+B1+B2| CO+C1+CZ

000
000
:.
MPI _Allreduce
& (F >1 >1
&'(/ &'(+ &'(*

IN >1 (address of send buffer)

OouT >1 (address of receive buffer)

IN (number of elements in send buffer)

IN (data type of elements in send buffer)

IN (reduce operation)

IN (communicator)

Example: MPI_Allreduce

L
&'(())
&(* 0 &'(*+8&& +-1)
&'(* &'(*+8&& +-1)
2
& (F &((OH &(<B& &'(*+&& ,+-./

))
&(F))L &((OH & (&FM &'(*+&& ,+-./
))" &((OH &(&0O &(*+&& ,+-./

1 56 L56 567 L

Example: MPI_Allreduce
[Output]

[negrut@euler24 CodeBits]$ mpiexec -np 10 me759.exe
gsum: 45, gmax: 9 gmin:0

gsum: 45, gmax: 9 gmin:0
gsum: 45, gmax: 9 gmin:0
gsum: 45, gmax: 9 gmin:0
gsum: 45, gmax: 9 gmin:0
gsum: 45, gmax: 9 gmin:0
gsum: 45, gmax: 9 gmin:0
gsum: 45, gmax: 9 gmin:0
gsum: 45, gmax: 9 gmin:0

gsum: 45, gmax: 9 gmin:0
[negrut@euler24 CodeBits]$

MPI_SCAN

Performs a prefix reduction on data distributed across a communicator

The operation returns, in the receive buffer of the process with rank , the
reduction of the values in the send buffers of processes with ranks
3 (inclusive)

The type of operations supported, their semantics, and the constraints on
send and receive buffers are as for &'(-N/B*N

CY X
0000
o000
MPI SCAN
. CY)
o
before MPI_SCAN
* inbuf A[B|C
o result N
after
A AoD AoDoG AoDoGoJ AoDoGoJoM
N\ J

~"

done in parallel O
124

[ICHEC]

Scan Operation

processes

[A. Siegel]

data (input buffer)——

AO | BO | CO
Al | B1 | C1
A2 | B2 | C2

Scan

(Y X
o000
o000
eo0o
o0
O
data (output buffer) >
A0 BO CO
AO+A1l BO+B1 CO0+C1
AO+Al1+A2 | BO+B1+B2| CO+C1+CZ

MPI Scan: Prefix reduction

Process i receives data reduced on process 3 through

(314 [2] (8] [[T Ejﬁznsmzuu

(512 1[5\ 117]1[11] (816][7][91[19][12]

(2 1[4][4 N10][4][5] [10/110][11][19][23][17]

[(11[61[9] [111][16][12][22][24][18]

'6 entries
MPI_Scan (sbuf,rbuf,6,MPI_INT,MPI_SUM,MPI_COMM_WORLD)

126

[A. Snavely]

[A. Siegel]

MPI Scan

&'(<

IN
OuT
IN
IN
IN
IN

Note:

>1

&(/

>1
>1

> 1
&+ &'(*

(address of send buffer)

(address of receive buffer)

(number of elements in send buffer)
(data type of elements in send buffer)
(reduce operation)

(communicator)

refers to total number of elements that will be
received into receive buffer after operation is complete

Example: MP|_Scan

[Output]

[negrut@euler26 CodeBits]$ mpicxx -0 me759.exe testM Pl.cpp
[negrut@euler26 CodeBits]$ mpiexec -np 4 me759.exe

Process 0. Entry:
Process 0. Entry:

Process 1. Entry:
Process 1. Entry:

Process 2. Entry:
Process 2. Entry:

Process 3. Entry:
Process 3. Entry:

0.
1.

0.
1.

=

=

Value:
Value:

Value:
Value:

Value:
. Value:

Value:
. Value:

0
0

1
2

BN

o W

Post Scan - Content on Process: O
Entry: 0. Scan Val: O
Entry: 1. Scan Val: O

Post Scan - Content on Process: 1
Entry: 0. Scan Val: 1
Entry: 1. Scan Val: 2

Post Scan - Content on Process: 2
Entry: 0. Scan Val: 3
Entry: 1. Scan Val: 6

Post Scan - Content on Process: 3
Entry: 0. Scan Val: 6

Entry: 1. Scan Val: 12
[negrut@euler26 CodeBits]$

MPI| EXxscan

&'(NL IS like &'(< , except that the contribution from the calling process
Is not included in the result at the calling process (it is contributed to the
subsequent processes)

Thevaluein >1 onthe process with rank 3 is undefined, and >1 s not
signficant on process 3

Thevaluein >1 on the process with rank 1 is defined as the valuein >1
on the process with rank 3

For processes withrank ", the operation returns, in the receive buffer of the
process with rank , the reduction of the values in the send buffers of processes
with ranks 3 " (inclusive)

The type of operations supported, their semantics, and the constraints on send and

receive buffers, are as for &'(-N/B*N
130

[A. Siegel]

MPI| EXxscan

&'(NL
&'(/

IN > 1
ouT >1

>1
&(+ &(*

(address of send buffer)

(address of receive buffer)

(number of elements in send buffer)
(data type of elements in send buffer)
(reduce operation)

(communicator)

Example: MP| _Exscan

[Output]

[negrut@euler26 CodeBits]$ mpicxx -0 me759.exe testM Pl.cpp
[negrut@euler26 CodeBits]$ mpiexec -np 4 me759.exe

Process 0. Entry:
Process 0. Entry:

Process 1. Entry:
Process 1. Entry:

Process 2. Entry:
Process 2. Entry:

Process 3. Entry:
Process 3. Entry:

0.
1.

0.
1.

=

=

Value:
Value:

Value:
Value:

Value:
. Value:

Value:
. Value:

0
0

1
2

BN

o W

Post Scan - Content on Process: O
Entry: 0. Scan Val: 321045752
Entry: 1. Scan Val: 32593

Post Scan - Content on Process: 1
Entry: 0. Scan Val: O
Entry: 1. Scan Val: O

Post Scan - Content on Process: 2
Entry: 0. Scan Val: 1
Entry: 1. Scan Val: 2

Post Scan - Content on Process: 3
Entry: 0. Scan Val: 3

Entry: 1. Scan Val: 6
[negrut@euler26 CodeBits]$

User-Defined Reduction Operations

Operator handles
Predefined — see table of last lecture: MPI_SUM, MPI_MAX, etc.
User-defined

User-defined operation n :
Should be associative
User-defined function must perform the operation “vector A n vector_B”

Registering a user-defined reduction function:

&'(+ &(B 1 1 &'(+

tells the MPI library whether 1 IS commutative or not

[ICHEC] 4

Example: s @

Norm 1 of a Vector o
1 23 CcC
2 1> C 1> 4 4
CcC
CcC
8
1046 8

23
1 >1 >1
&'(+ Continues here. ..

2"
&'(())
&(* 0 &(*+8&& +-1)
&'(* &(*+&8& 4/)
44
&(+)
44 1
>1 2 Y
&(R &'(*+&& -]
&(-) >1) >1" &(,.+FH &'(*+&& -]
1 22
1 H 617 >1
&(: 0
. 135

code more simple...

MPI| Derived Types

[Describing Non-contiguous and Heterogeneous Data]

The Relevant Question

The relevant question that we want to be able to answer?
“What's in your buffer?”

Communication mechanisms discussed so far allow send/recv of a contiguous
buffer of identical elements of predefined data types

Often want to send non-homogenous elements (structure) or chunks that are not
contiguous in memory

MPI enables you to define derived data types to answer the question “What’s in
your buffer?”

MPI| Datatypes

MPI Primitive Datatypes
&'((, &'(; , &'((OHNAN- , etc.

Derived Data types - can be constructed by four methods:

contiguous
vector
indexed
struct

Can be subsequently used in all point-to-point and collective communication

The motivation: create your own types to suit your needs
More convenient
More efficient

Type Maps

[Jargon]

A derived data type specifies two things:
A sequence of primitive data types

A sequence of integers that represent the byte displacements, measured
from the beginning of the buffer

Displacements are not required to be positive, distinct, or in increasing
order (however, negative displacements will precede the buffer)

Order of items need not coincide with their order in memory, and an item
may appear more than once

Type Map

Primitive datatype O

Displacement of O

Primitive datatype 1

Displacement of 1

Primitve datatype n-1

Displacement of n-1

Extent

[Jargon]

Extent: distance, in bytes, from beginning to end of type

More specifically, the extent of a data type is defined as:

... the span from the first byte to the last byte occupied by entries in this data type rounded up
to satisfy alignment requirements

Example:
Type={(double ,0),(char,8)} l.e. offsets of O and 8 respectively.
Now assume that doubles are aligned strictly at addresses that are multiples of 8
extent = 16 (9 rounds to next multiple of 8, which is where the next double would land)

Map Type, Examples

What is extent of type {(char, 0), (double, 8)}?
Ans: 16

Is this a valid type: {(double, 8), (char, 0)}?
Ans: yes, since order does not matter

Example

What is Type Map of &'((OH , &'(/+BR.N , etc.?

{(int,0)}
{(double, 0)}

Etc.

[A. Siegel] 4

Type Signature

[Jargon]

The seqguence of primitive data types (i.e. displacements
ignored) is the type signature of the data type

Example: a type map of
{(double,0),(int,8),(char, 12)}

...has a type signature of
{> . }

Data Type Interrogators

&'(F - C type that

/ holds any valid address

&(H L &(/ &(F L

- primitive or derived
L - returns extent of In bytes

&(H 0 &(/ 0

- primitive or derived

O - returns size in bytes of the entries in the type signature of
Gaps don’t contribute to size

This is the total size of the data in a message that would be created with this
datatype

Entries that occur multiple times in the datatype are counted with their multiplicity

14
6

Committing Data Types

Each derived data type constructor returns an uncommited data type. Think
of commit process as a compilation of data type description into efficient
internal form

&'(H &'(/
Required for any derived data type before it can be used in communication

Subsequently can use in any function call where an &'(/ IS
specified

(Y X
o000
T
MPI Type free t
&(H 1 &'(/
Callto &'(H 1 sets the value of an MPI data type to &'(/FHFHX'N OB..

Data types that were derived from the defined data type are unaffected.

Co . coos

MPI Type-Definition Functions 1
[constructors 7] o

&(H * . a replication of data type into contiguous locations

&'(H . replication of data type into locations that consist of

equally spaced blocks

&'(H . like vector, but successive blocks are not

multiple of base type extent

&'(H L . non-contiguous data layout where displacements

between successive blocks need not be equal

&'(H . most general — each block may consist of

replications of different data types

The inconsistent naming convention is unfortunate but carries no deeper meaning. Itis a
compatibility issue between old and new version of MPI.

[A. Siegel] 9

MPI|_Type contiguous

&(H &(/ &(/ 9

IN count (replication count)
IN oldtype (base data type)
OUT newtype (handle to new data type)

Creates a new type which is simply a replication of old type into
contiguous locations

[A. Siegel]

Example: MPI_Type_ contiguous
[Output]

[negrut@euler24 CodeBits]$ mpiexec -np 10 me759.exe
P:1 received coords are (15,23,6)
[negrut@euler24 CodeBits]$

Motivation: MPIl_Type vector

Assume you have a 2D array of integers, and want send the last column

LI@%!$%
Content of L:
"3 "H# " "@ "G "J "K
"33 "3" "3# "37? "3@ "3G "3J "3K
"333 "33" "33# "337? "33 @ "33G "33J "33K
"3333 "333" "333# "333? "33 3@ "333G "333J "333K

There should be a way to say that | want to transfer integers, 4 of them, and
they are stored in array L 8 integers apart (the stride)

MPI|_ Type_ vector: Example

01
B /
2
201
[1
count=2

blocklength = 3
stride = 5

154

MPI1 _Type vector

&'(H IS a constructor that allows replication of a data type
into locations that consist of equally spaced blocks.

Each block is obtained by concatenating the same number of copies of
the old data type

Spacing between blocks is a multiple of the extent of the old data type

One way to look at it:
You want some entries but don’t care about other entries in an array
There is a repeatability to this pattern of “wanted” and “not wanted” entries

000
000
:.

MPI1_Type vector

&'(H >
&'(/ &'(/ 9

IN (number of blocks)

IN > (number of elements per block)

IN (spacing between start of each block, measured as # elements)

IN (base datatype)

OuT 9 (handle to new type)

Allows replication of old type into locations of equally spaced blocks. Each
block consists of same number of copies of with a stride that is
multiple of extent of old type

Example: MPIl_Type vector
[Output]

Content of x:

"3 "# "? "@ "G "J "K
"33 3" "3# "37? "3@ "3G "3J "3K
333 "33" "33# "33? "33 @ "33G "33J "33K
"3333 "333" "333# "333? "33 3@ "333G "333) "333K

[negrut@euler1l9 CodeBits]$ mpiexec -np 12 me759.exe
P:1 my x[0][2]=17.000000

P:1 my x[1][2]=107.000000

P:1 my x[2][2]=1007.000000

P:1 my x[3][2]=10007.000000

[negrut@euler19 CodeBits]$

Example: MP|_Type vector

Given: Local 2D array of interior size mxn with n, ghostcells at each edge
You wish to send the interior (non ghostcell) portion of the array
How would you describe the data type to do this in a single MPI call?

&'(H > &(/ &'(/ 9
startPoint n
) \l 1
m L |
] —y—] ——]
Ans: n, Ny
&(H C# &(/+BR.IN)
&'(H)

&(< o &'(*+&& +-./ 15

Type Map Example :
Start with for which
Type Map = {(double, 0), (char, 8)}
What is Type Map of 9 If defined as below?
&'(H (2,3,4, & 9)
&(H > & (! &(/ 9
Ans:

{ic> 0. .8, (> a6 249,(> .32 .40,
(> 64(,72,(> 80)(.88, > ,9)(,104)}

16
0

Exercise: MPI_Type vector

Express
&'(H) 9
...asacallto &(H

& (H > &(/ &(/ 9

ANS:
&'(H "o) 9
&'(H ¥) 9

Outline

MPI| Closing Remarks

MPI| — We’re Scratching the Surface

In some MPI implementations there are more than 300 MPI functions
Not all of them part of the MPI standard though, some vendor specific

MPI_Abort, MPI_Accumulate, MPI_Add_error_class, MPI_Add_error_code, MPI_Add_error_string, MPI_Address, MPI_Allgather, MPI_Allgatherv, MPI_Alloc_mem, MPI_Allreduce, MPI_Alltoall, MPI_Alltoallv,
MPI_Alltoallw, MPI_Attr_delete, MPI_Attr_get, MPI_Attr_put, MPI_Barrier, MPI_Bcast, MPI_Bsend, MPI_Bsend_init, MPI_Buffer_attach, MPI_Buffer_detach, MPI_Cancel, MPI_Cart_coords, MPI_Cart_create,
MPI_Cart_get, MPI_Cart_map, MPI_Cart_rank, MPI_Cart_shift, MPI_Cart_sub, MPI_Cartdim_get, MPI_Comm_call_errhandler, MPI_Comm_compare, MPI_Comm_create, MPI_Comm_create_errhandler,
MPI_Comm_create_keyval, MPI_Comm_delete_attr, MPI_Comm_dup, MPI_Comm_free, MPI_Comm_free_keyval, MPI_Comm_get_attr, MPI_Comm_get_errhandler, MPI_Comm_get name, MPI_Comm_group,
MPI_Comm_rank, MPI_Comm_remote_group, MPI_Comm_remote_size, MPI_Comm_set_attr, MPI_Comm_set_errhandler, MPI_Comm_set_name, MPI_Comm_size, MPI_Comm_split, MPI_Comm_test_inter,
MPI_Dims_create, MPI_Errhandler_create, MPI_Errhandler_free, MPI_Errhandler_get, MPI_Errhandler_set, MPI_Error_class, MPI_Error_string, MPI_Exscan, MPI_File_call_errhandler, MPI_File_close,
MPI_File_create_errhandler, MPI_File_delete, MPI_File_get_amode, MPI_File_get_atomicity, MPI_File_get_byte_offset, MPI_File_get_errhandler, MPI_File_get_group, MPI_File_get_info, MPI_File_get_position,
MPI_File_get_position_shared, = MPI_File_get_size, = MPI_File_get_type_extent, = MPI_File_get view, MPI_File_iread, = MPI_File_iread_at, = MPI_File_iread_shared, = MPI_File_iwrite, =~ MPI_File_iwrite_at,
MPI_File_iwrite_shared, MPI_File_open, MPI_File_preallocate, MPI_File_read, MPI_File_read_all, MPI_File_read_all_begin, MPI_File_read_all_end, MPI_File_read_at, MPI_File_read_at_all, MPI_File_read_at_all_begin,
MPI_File_read_at_all_end, MPI_File_read_ordered, MPI_File_read_ordered_begin, MPI_File_read_ordered_end, MPI_File_read_shared, MPI_File_seek, MPI_File_seek_shared, MPI_File_set_atomicity,
MPI_File_set_errhandler, MPI_File_set_info, MPI_File_set_size, MPI_File_set_view, MPI_File_sync, MPI_File_write, MPI_File_write_all, MPI_File_write_all_begin, MPI_File_write_all_end, MPI_File_write_at,
MPI_File_write_at_all, MPI_File_write_at_all_begin, MPI_File_write_at_all_end, MPI_File_write_ordered, MPI_File_write_ordered_begin, MPI_File_write_ordered_end, MPI_File_write_shared, MPI_Finalize,
MPI_Finalized, MPI_Free_mem, MPI_Gather, MPI_Gatherv, MPI_Get, MPI_Get_address, MPI_Get_count, MPI_Get_elements, MPI_Get_processor_name, MPI_Get_version, MPI_Graph_create, MPI_Graph_get,
MPI_Graph_map, MPI_Graph_neighbors, MPI_Graph_neighbors_count, MPI_Graphdims_get, MPI_Grequest_complete, MPI_Grequest_start, MPI_Group_compare, MPI_Group_difference, MPI_Group_excl,
MPI_Group_free, MPI_Group_incl, MPI_Group_intersection, MPI_Group_range_excl, MPI_Group_range_incl, MPI_Group_rank, MPI_Group_size, MPI_Group_translate_ranks, MPI_Group_union, MPI_Ibsend,
MPI_Info_create, MPI_Info_delete, MPI_Info_dup, MPI_Info_free, MPI_Info_get, MPI_Info_get_nkeys, MPI_Info_get nthkey, MPI_Info_get_valuelen, MPI_Info_set, MPI_Init, MPI_Init_thread, MPI_Initialized,
MPI_Intercomm_create, MPI_Intercomm_merge, MPI_Iprobe, MPI_Irecv, MPI_Irsend, MPI_Is_thread_main, MPI_Isend, MPI_lssend, MPI_Keyval_create, MPI_Keyval_free, MPI_Op_create, MPI_Op_free, MPI_Pack,
MPI_Pack_external, MPI_Pack_external_size, MPI_Pack_size, MPI_Pcontrol, MPI_Probe, MPI_Put, MPI_Query thread, MPI_Recv, MPI_Recv_init, MPI_Reduce, MPI_Reduce_scatter, MPI_Register_datarep,
MPI_Request_free, MPI_Request_get_status, MPI_Rsend, MPI_Rsend_init, MPI_Scan, MPI_Scatter, MPI_Scatterv, MPI_Send, MPI_Send_init, MPI_Sendrecv, MPI_Sendrecv_replace, MPI_Ssend, MPI_Ssend_init,
MPI_Start, MPI_Startall, MPI_Status_set_cancelled, MPI_Status_set_elements, MPI_Test, MPI_Test_cancelled, MPI_Testall, MPI_Testany, MPI_Testsome, MPI_Topo_test, MPI_Type_commit, MPI_Type_contiguous,
MPI_Type_create_darray, MPI_Type_create_f90_complex, MPI_Type_create_f90_integer, MPI_Type_create_f90_real, MPI_Type_create_hindexed, MPI_Type_create_hvector, MPI_Type_create_indexed_block,
MPI_Type_create_keyval, MPI_Type_create_resized, MPI_Type_create_struct, MPI_Type_create_subarray, MPI_Type_delete_attr, MPI_Type_dup, MPI_Type_extent, MPI_Type_free, MPI_Type_free_keyval,
MPI_Type_get_attr, MPI_Type_get_contents, MPI_Type_get_envelope, MPI_Type_get extent, MPI_Type_get_name, MPI_Type_get_true_extent, MPI_Type_hindexed, MPI_Type_hvector, MPI_Type_indexed,
MPI_Type_lb, MPI_Type_match_size, MPI_Type_set_attr, MPI_Type_set_name, MPI_Type_size, MPI_Type_struct, MPI_Type_ub, MPI_Type_vector, MPI_Unpack, MPI_Unpack_external, MPI_Wait, MPI_Waitall,
MPI_Waitany, MPI_Waitsome, MPI_Win_call_errhandler, MPI_Win_complete, MPI_Win_create, MPI_Win_create_errhandler, MPI_Win_create_keyval, MPI_Win_delete_attr, MPI_Win_fence, MPI_Win_free,
MPI_Win_free_keyval, MPI_Win_get_attr, MPI_Win_get_errhandler, MPI_Win_get_group, MPI_Win_get_name, MPI_Win_lock, MPI_Win_post, MPI_Win_set_attr, MPI_Win_set_errhandler, MPI_Win_set_name,
MPI_Win_start, MPI_Win_test, MPI_Win_unlock, MPI_Win_wait, MPI_Wtick, MPI_Wtime

Recall the 20/80 rule: six calls is probably what you need to implement a decent MPI code...
MPI_Init, MPI_Comm_Size, MPI_Comm_Rank, MPI_Send, MPI_Recv, MPI_Finalize

163

The PETSc Library

[The message: Use libraries if available]

PETSc: Portable, Extensible Toolkit for Scientific Computation
One of the most successful libraries built on top of MPI
Intended for use in large-scale application projects,
Developed at Argonne National Lab (Barry Smith)
Open source, available for download at

PETSc provides routines for the parallel solution of systems of
equations that arise from the discretization of PDEs

Linear systems
Nonlinear systems
Time evolution

PETSc also provides routines for
Sparse matrix assembly
Distributed arrays
General scatter/gather (e.g., for unstructured grids) 164

Structure of PETSc

PETSc PDE Numerical Solution Utilities

ODE Integrators Vjsualization

Nonlinear Solvers,

) L Interface
Unconstrained Minimization
Linear Solvers
Preconditioners + Krylov Methods
Object-Oriented Grid
Matrices, Vectors, Indices Management

Profiling Interface

Computation and Communication Kernels
MPI, MPI-I0O, BLAS, LAPACK

165

PETSc Numerical Components

Nonlinear Solvers Time Steppers
Newton-based Methods Backward | Pseudo Timi
Other Euler i Other
Line Search Trust Region Euler Stepping
Krylov Subspace Methods
GMRES CG CGS | BI-CG-STAB | TFQMR | Richardsor| Chebychey Other
Preconditioners
Additi Block . LU
Sch\:vg/retz Ja?:gbi Jacobi ILU ICC (Sequential only) ©Others
Matrices
Compresseq Blocked Compresse(Block
Sparse Row Sparse Row Diagonal Dense | Matrix-free | Other
(AlJ) (BAIJ) (BDIAG)
Distributed Arrays Index Sets
Indices Block Indices Stride Other

Vectors

166

Flow Control for PDE Solution esec”

Timestepping Solvers (TS)

Nonlinear Solvers (SNES)

Linear Solvers (SLES)

¢ Usercode <> PETSc code 167

CUDA, OpenMP, MPI.

Putting Things in Perspective

Pros, CUDA

Many remarkable success stories when the application targeted is
data parallel and with high arithmetic intensity

One order of magnitude speed-ups are common

Very affordable — democratization of parallel computing

At a price of $10K you get half the flop rate of what an IBM BlueGene/L
got you Six or seven years ago

Ubiquitous
Present on more than 100 million computers today support CUDA

Good productivity tools

169

Ccons, CUDA

To extract last ounce of performance that makes GPU computing great you
need to understand the computational model and the underlying hardware

Not that much device memory available — 6 GB is the most you get today

Getting around it requires moving data in and out of the device, which complicates the
programming job

Until the CPU and GPU are fully integrated, the PCI connection is
Impacting performance and complicating the implementation task

For true HPC, using CUDA in conjunction with MPI remains a challenge
Ongoing projects aimed at addressing this, but still...

170

What Would Be Nice...

The global memory bandwidth should increase at least as fast as the rate
at which the number of scalar processors increases

Integrate CPU & GPU so that concept of global device memory disappears

Have the OpenACC standard succeed for seamless parallel accelerator
and/or many-core programming

171

Pros of OpenMP

Because it takes advantage of shared memory, the programmer does not need to
worry (that much) about data placement

Programming model is “serial-like”, thus conceptually simpler than message passing

Compiler directives are generally simple and easy to use

Legacy serial code does not need to be rewritten

Cons of OpenMP

The model doesn’t scale up all that well

100.00 |

In general, only moderate speedups can be _
aChieved] Fractionof

Serial Code
Because OpenMP codes tend to have

serial-only portions, Amdahl’'s Law prohibits _ /”_- :222
10.00 - '

substantial speedups —01

Parallel Speedup

e).}

Amdahl’'s Law:
s = Fraction of serial execution time that cannot 0o £

be para”elized 1 2 a 8 16 32 64 128 256 512 1024
N = Number of processors Processors

0.5

If you have big loops that dominate execution time, these are ideal targets for OpenMP

Pros of MPI

Good vendor support for the standard

It was great that the community converged upon a standard (something that can’t be said
about GPU computing)

Proven parallel computing solution, demonstrated to scale up to hundreds of
thousands of cores

Can be deployed both for distributed as well as shared memory architectures

Today it is synonym with High Performance Computing

Provided a clear and relatively straightforward framework for reaching Petaflops grade
computing

174

Cons of MPI

The interconnect is Achilles' heel. Top bandwidths today are
comparable to what you get over PCI-Express

Latency typically worse though

Like CUDA, works well only for applications where you don’t have to
communicate all that much (high arithmetic intensity)

175

General Remarks on Parallel Computing

Parallel Computing is and will be relevant at least for this decade

Nonetheless, it continues to be challenging

Switching your thinking about getting a job done from sequential to parallel mode
takes some time but it’s a skill that is eventually acquired

Parallel Programming more difficult than programming for Sequential Computing

Productivity tools (debuggers, profilers, build solutions) more challenging to master

Need to understand the problem that you solve, the pros/cons of the parallel
programming models available, and of the hardware on which your code will run

176

Skills I hope You Picked Up in ME759

| think of these as items that you can add to your resume:
Basic understanding of hardware for parallel computing

Basic understanding of parallel execution models: SIMD, MIMD, etc.
CUDA programming

OpenMP Programming

MPI Programming

[Build management: Cmake]

Debugging: gdb, cuda-gdb , memcheck, cuda-memcheck

Profiling: nvvp

177

ME7509:
Most Important Two Things 2

Don’t move data around
Costly in terms of time and energy.

Hone your “computational thinking” skills

178

