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CUDA Programming

e Remember, CUDA programs have a basic flow:
1)The host initializes an array with data.
2)The array is copied from the host to the memory on the CUDA device.
3)The CUDA device operates on the data in the array.
4)The array is copied back to the host.






Example 1: Vector Dot Product

e Recall the dot product example from last time:
e Given vectors a and b each with size N, store the result in scalar ¢

c=ab=ab, +a,b,+...+a,b,

Purpose of the exercise: use shared memory



Example 1: Vector Dot Product

We originally used a global memory vector to store the product of the
vector elements

e The C array was passed in as a function argument

if(i<N) C[i] = A[i] * B[i];

This time around, use a shared memory vector instead:

__shared__ float C_shared[N];
if(i<N) C_shared[i] = A[i] * B[i];



Example 1: Vector Dot Product

e To compile this code:

>> nvcce dotProductShared.cu

e To run this code:

>> gsub submit example.sh







Example 2: Matrix Multiplication

e In the basic implementation, the ratio of arithmetic computation to memory
transaction is very low — BAD

e Each computation required one fetch from global memory
e Matrix M copied from the global memory to the device N.width times

e Matrix N copied from the global memory to the device M. height times



Multiply Using Several Blocks

One computes one square sub-matrix C,, of size Block_Size

One computes one entry of C

sub

Assume that the dimensions of A and B are
multiples of Block_Size and square shape

Doesn’t have to be like this, but keeps example
simpler and focused on the concepts of interest

In this example work with Block_Size=16x16

NOTE: Similar example provided in the CUDA
Programming Guide 4.2 < ><
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A Block of 16 X 16 Threads
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#define BLOCK_SIZE 16

__global__ void Muld(float*, float*, int, int, float*);

void Mul(const float* A, const float* B, int hA, int wA, int wB, float* C)
{

int size;

float* Ad;

size = hA* wA * sizeof(float);
cudaMalloc((void**)&Ad, size);

cudaMemcpy(Ad, A, size, cudaMemcpyHostToDevice);

float* Bd;

size = wA * wB * sizeof(float);
cudaMalloc((void**)&Bd, size);

cudaMemcpy(Bd, B, size, cudaMemcpyHostToDevice);

(continues below...)

(continues with next block...)
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float* Cd;
size = hA* wB * sizeof(float);
cudaMalloc((void**)&Cd, size);

dim3 dimBlock(BLOCK_SIZE, BLOCK_SIZE);
dim3 dimGrid( wB/dimBlock.x , hA/dimBlock.y );

Muld<<<dimGrid, dimBlock>>>(Ad, Bd, wA, wB, Cd);

cudaMemcpy(C, Cd, size, cudaMemcpyDeviceToHost);

cudaFree(Ad);
cudaFree(Bd);
cudaFree(Cd);

}
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__global__ void Muld(float* A, float* B, int WA, int wB, float* C)
{

int bx = blockldx.x;
int by = blockldx.y;

int tx = threadldx.x;
int ty = threadldx.y;

int aBegin = wA * BLOCK_SIZE * by;

int aEnd = aBegin + WA - 1;

int aStep = BLOCK_SIZE;

int bBegin = BLOCK_SIZE * bx;

int bStep = BLOCK_SIZE * wB;

float Csub = 0;

(continues with next block...)
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__shared__ float AsJBLOCK_SIZE][BLOCK_SIZE]; <«

__shared__ float Bs[BLOCK_SIZE][BLOCK_SIZE]; <«

for (int a = aBegin, b = bBegin;
a<=aEnd;
a += aStep, b += bStep) {

As[ty][tx] = A[la + WA * ty + tx];
Bs[ty][tx] = B[b + wB * ty + tx];

= syncthreads();

for (int k = 0; k< BLOCK_SIZE; ++k)
Csub += As[ty][K] * Bs[K][tx];

->_syncth reads();
}

intc =wB * BLOCK_SIZE * by + BLOCK_SIZE * bx;
Clc + wB * ty + tx] = Csub;
}




Example 2: Matrix Multiplication

e To compile this code:

>> gqsub compile.sh

e To run this code:

>> gsub submit example.sh
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Try to do it alone...

e Remember, CUDA programs have a basic flow:
1)The host initializes an array with data.
2)The array is copied from the host to the memory on the CUDA device.
3)The CUDA device operates on the data in the array.
4)The array is copied back to the host.
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