GPU Computing with CUDA

Hands-on: Shared Memory Use
(Dot Product, Matrix Multiplication)

Dan Melanz & Andrew Seidl

Simulation-Based Engineering Lab

Wisconsin Applied Computing Center

Department of Mechanical Engineering

Department of Electrical and Computer Engineering
University of Wisconsin-Madison

Portland, Oregon

© Dan Negrut, 2012 August 4, 2013
UW-Madison

CUDA Programming

e Remember, CUDA programs have a basic flow:
1)The host initializes an array with data.
2)The array is copied from the host to the memory on the CUDA device.
3)The CUDA device operates on the data in the array.
4)The array is copied back to the host.

Example 1: Vector Dot Product

e Recall the dot product example from last time:
e Given vectors a and b each with size N, store the result in scalar ¢

c=ab=ab, +a,b,+...+a,b,

Purpose of the exercise: use shared memory

Example 1: Vector Dot Product

We originally used a global memory vector to store the product of the
vector elements

e The C array was passed in as a function argument

if(i<N) C[i] = A[i] * B[i];

This time around, use a shared memory vector instead:

__shared__ float C_shared[N];
if(i<N) C_shared[i] = A[i] * B[i];

Example 1: Vector Dot Product

e To compile this code:

>> nvcce dotProductShared.cu

e To run this code:

>> gsub submit example.sh

Example 2: Matrix Multiplication

e In the basic implementation, the ratio of arithmetic computation to memory
transaction is very low — BAD

e Each computation required one fetch from global memory
e Matrix M copied from the global memory to the device N.width times

e Matrix N copied from the global memory to the device M. height times

Multiply Using Several Blocks

One computes one square sub-matrix C,, of size Block_Size

One computes one entry of C

sub

Assume that the dimensions of A and B are
multiples of Block_Size and square shape

Doesn’t have to be like this, but keeps example
simpler and focused on the concepts of interest

In this example work with Block_Size=16x16

NOTE: Similar example provided in the CUDA
Programming Guide 4.2 < ><

Block_Size Block_Size

WA

»
»

Csub

>
Block_Size

wB

Block_Size

Block_Size

Block_Size

WA

hA

<
)l

v
A

v

A Block of 16 X 16 Threads

(1,0) (2,0)

(tx=0,ty=00® @ @

©01) e e @

05 e e e

(1,15

)

® (15,0

~
~

10

#define BLOCK_SIZE 16

__global__ void Muld(float*, float*, int, int, float*);

void Mul(const float* A, const float* B, int hA, int wA, int wB, float* C)
{

int size;

float* Ad;

size = hA* wA * sizeof(float);
cudaMalloc((void**)&Ad, size);

cudaMemcpy(Ad, A, size, cudaMemcpyHostToDevice);

float* Bd;

size = wA * wB * sizeof(float);
cudaMalloc((void**)&Bd, size);

cudaMemcpy(Bd, B, size, cudaMemcpyHostToDevice);

(continues below...)

(continues with next block...)

11

float* Cd;
size = hA* wB * sizeof(float);
cudaMalloc((void**)&Cd, size);

dim3 dimBlock(BLOCK_SIZE, BLOCK_SIZE);
dim3 dimGrid(wB/dimBlock.x , hA/dimBlock.y);

Muld<<<dimGrid, dimBlock>>>(Ad, Bd, wA, wB, Cd);

cudaMemcpy(C, Cd, size, cudaMemcpyDeviceToHost);

cudaFree(Ad);
cudaFree(Bd);
cudaFree(Cd);

}

First entry
of the tile

(number of tiles

along the width of B)

bx

- DBegin

(number of tiles
down the height of A)

oBegn__astep

e

I

12

__global__ void Muld(float* A, float* B, int WA, int wB, float* C)
{

int bx = blockldx.x;
int by = blockldx.y;

int tx = threadldx.x;
int ty = threadldx.y;

int aBegin = wA * BLOCK_SIZE * by;

int aEnd = aBegin + WA - 1;

int aStep = BLOCK_SIZE;

int bBegin = BLOCK_SIZE * bx;

int bStep = BLOCK_SIZE * wB;

float Csub = 0;

(continues with next block...)

13

__shared__ float AsJBLOCK_SIZE][BLOCK_SIZE]; <«

__shared__ float Bs[BLOCK_SIZE][BLOCK_SIZE]; <«

for (int a = aBegin, b = bBegin;
a<=aEnd;
a += aStep, b += bStep) {

As[ty][tx] = A[la + WA * ty + tx];
Bs[ty][tx] = B[b + wB * ty + tx];

= syncthreads();

for (int k = 0; k< BLOCK_SIZE; ++k)
Csub += As[ty][K] * Bs[K][tx];

->_syncth reads();
}

intc =wB * BLOCK_SIZE * by + BLOCK_SIZE * bx;
Clc + wB * ty + tx] = Csub;
}

Example 2: Matrix Multiplication

e To compile this code:

>> gqsub compile.sh

e To run this code:

>> gsub submit example.sh

14

Try to do it alone...

e Remember, CUDA programs have a basic flow:
1)The host initializes an array with data.
2)The array is copied from the host to the memory on the CUDA device.
3)The CUDA device operates on the data in the array.
4)The array is copied back to the host.

15

16

