
GPU Computing with CUDA

© Dan Negrut, 2012
UW-Madison

Hands-on: Shared Memory Use

(Dot Product, Matrix Multiplication)

Dan Melanz & Andrew Seidl
Simulation-Based Engineering Lab

Wisconsin Applied Computing Center

Department of Mechanical Engineering

Department of Electrical and Computer Engineering

University of Wisconsin-Madison

Portland, Oregon

August 4, 2013

CUDA Programming

 Remember, CUDA programs have a basic flow:

1)The host initializes an array with data.

2)The array is copied from the host to the memory on the CUDA device.

3)The CUDA device operates on the data in the array.

4)The array is copied back to the host.

2

3

Quick examples...

Example 1: Vector Dot Product

4

 Recall the dot product example from last time:

 Given vectors a and b each with size N, store the result in scalar c

Purpose of the exercise: use shared memory

1 1 2 2· N Na b a ac b b ab

Example 1: Vector Dot Product

5

 We originally used a global memory vector to store the product of the

vector elements

 The C array was passed in as a function argument

__shared__ float C_shared[N];
if(i<N) C_shared[i] = A[i] * B[i];

 This time around, use a shared memory vector instead:

if(i<N) C[i] = A[i] * B[i];

Example 1: Vector Dot Product

6

 To compile this code:

 To run this code:

>> nvcc dotProductShared.cu

>> qsub submit_example.sh

7

End Programming Job #1

Example 2: Matrix Multiplication

8

 In the basic implementation, the ratio of arithmetic computation to memory
transaction is very low → BAD

 Each computation required one fetch from global memory

 Matrix M copied from the global memory to the device N.width times

 Matrix N copied from the global memory to the device M.height times

Multiply Using Several Blocks

 One block computes one square sub-matrix Csub of size Block_Size

A

B

C

Csub

Block_Size

wBwA

Block_SizeBlock_Size

tx

ty

B
lo

c
k

_
S

iz
e

B
lo

c
k

_
S

iz
e

B
lo

c
k

_
S

iz
e

h
A

w
A

9

NOTE: Similar example provided in the CUDA

Programming Guide 4.2

 One thread computes one entry of Csub

 Assume that the dimensions of A and B are
multiples of Block_Size and square shape

 Doesn’t have to be like this, but keeps example
simpler and focused on the concepts of interest

 In this example work with Block_Size=16x16

A Block of 16 X 16 Threads

(tx=0, ty=0)

(1,0)

(15,0)

(15,1)

(15,15)

(1,15)

(0,15)

(0,1)

(2,0)

10

// Thread block size

#define BLOCK_SIZE 16

// Forward declaration of the device multiplication func.

__global__ void Muld(float*, float*, int, int, float*);

// Host multiplication function

// Compute C = A * B

// hA is the height of A

// wA is the width of A

// wB is the width of B

void Mul(const float* A, const float* B, int hA, int wA, int wB, float* C)

{

int size;

// Load A and B to the device

float* Ad;

size = hA * wA * sizeof(float);

cudaMalloc((void**)&Ad, size);

cudaMemcpy(Ad, A, size, cudaMemcpyHostToDevice);

float* Bd;

size = wA * wB * sizeof(float);

cudaMalloc((void**)&Bd, size);

cudaMemcpy(Bd, B, size, cudaMemcpyHostToDevice);

// Allocate C on the device

float* Cd;

size = hA * wB * sizeof(float);

cudaMalloc((void**)&Cd, size);

// Compute the execution configuration assuming

// the matrix dimensions are multiples of BLOCK_SIZE

dim3 dimBlock(BLOCK_SIZE, BLOCK_SIZE);

dim3 dimGrid(wB/dimBlock.x , hA/dimBlock.y);

// Launch the device computation

Muld<<<dimGrid, dimBlock>>>(Ad, Bd, wA, wB, Cd);

// Read C from the device

cudaMemcpy(C, Cd, size, cudaMemcpyDeviceToHost);

// Free device memory

cudaFree(Ad);

cudaFree(Bd);

cudaFree(Cd);

}

(continues with next block…)

(continues below…)

11

A

B

C

bx

by

bStep

aStep

First entry

of the tile

(number of tiles

down the height of A)

(number of tiles

along the width of B)

bBegin

aBegin

12

// Device multiplication function called by Mul()

// Compute C = A * B

// wA is the width of A

// wB is the width of B

__global__ void Muld(float* A, float* B, int wA, int wB, float* C)

{

// Block index

int bx = blockIdx.x; // the B (and C) matrix sub-block column index

int by = blockIdx.y; // the A (and C) matrix sub-block row index

// Thread index

int tx = threadIdx.x; // the column index in the sub-block

int ty = threadIdx.y; // the row index in the sub-block

// Index of the first sub-matrix of A processed by the block

int aBegin = wA * BLOCK_SIZE * by;

// Index of the last sub-matrix of A processed by the block

int aEnd = aBegin + wA - 1;

// Step size used to iterate through the sub-matrices of A

int aStep = BLOCK_SIZE;

// Index of the first sub-matrix of B processed by the block

int bBegin = BLOCK_SIZE * bx;

// Step size used to iterate through the sub-matrices of B

int bStep = BLOCK_SIZE * wB;

// The element of the block sub-matrix that is computed

// by the thread

float Csub = 0;

// Shared memory for the sub-matrix of A

__shared__ float As[BLOCK_SIZE][BLOCK_SIZE];

// Shared memory for the sub-matrix of B

__shared__ float Bs[BLOCK_SIZE][BLOCK_SIZE];

// Loop over all the sub-matrices of A and B required to

// compute the block sub-matrix

for (int a = aBegin, b = bBegin;

a <= aEnd;

a += aStep, b += bStep) {

// Load the matrices from global memory to shared memory;

// each thread loads one element of each matrix

As[ty][tx] = A[a + wA * ty + tx];

Bs[ty][tx] = B[b + wB * ty + tx];

// Synchronize to make sure the matrices are loaded

__syncthreads();

// Multiply the two matrices together;

// each thread computes one element

// of the block sub-matrix

for (int k = 0; k < BLOCK_SIZE; ++k)

Csub += As[ty][k] * Bs[k][tx];

// Synchronize to make sure that the preceding

// computation is done before loading two new

// sub-matrices of A and B in the next iteration

__syncthreads();

}

// Write the block sub-matrix to global memory;

// each thread writes one element

int c = wB * BLOCK_SIZE * by + BLOCK_SIZE * bx;

C[c + wB * ty + tx] = Csub;

}

(continues with next block…)

13

14

 To compile this code:

 To run this code:

>> qsub compile.sh

>> qsub submit_example.sh

Example 2: Matrix Multiplication

Try to do it alone…

 Remember, CUDA programs have a basic flow:

1)The host initializes an array with data.

2)The array is copied from the host to the memory on the CUDA device.

3)The CUDA device operates on the data in the array.

4)The array is copied back to the host.

15

16

End Programming Job #2

