GPU Computing with CUDA

© Dan Negrut, 2012
UW-Madison

Hands-on: CUDA Profiling, Thrust

Dan Melanz & Andrew Seidl

Simulation-Based Engineering Lab
Wisconsin Applied Computing Center
Department of Mechanical Engineering
University of Wisconsin-Madison

Portland, Oregon
August 4, 2013

CUDA Profiling

= O M Properties 53| Bl Detail Graphs =0

161}
= Process: 11119
= Thread: -1494415584

Driver AP
= (0] GeForce GTX 480
= Context 1 (Cuoa)

T MemCpy (HioD)

¥ MemCpy (DtoH).

T MamCpy (Dto0)

 compute
¥ 0.7% [101] CUD.
T 0.3% [10] CUDAK...
¥ 0.0% (2] CUDRKe...
T 0.0% [1] CUDAke....
T 0.0% [1] CUDAKke....
T 0.0% [1] CUDAke....
T 0.0% [1] CUDAke.
¥ 0.0% (1] CUDAKe....

8 Analysis 53 | I Details W8 Conscle B Settings

Timeline
Multiprocessor

Kernel Memory

Runtime AR | (1]

™ 1618 ms 1615 ms 162ms CUDAKernel1DCT(float, int, int, int)

Start 161329 ms !
Ouration 106,132 s)
Grid size [6464.1]
Block Size 1881]
RegistersThread 1
‘Shared Memory/Block 512 bytes !
= Memory !
Global Load Efficiency wa
Global Store Efficiency 100%
ORAM Utilization 10.9% (184
- instruction
Branch Divergence Ow 0%
Total Replay Overhead 51%
‘Shared Memory Replay Ov| 0%
Global Memory Replay Ovi & S1%
[e et e T
Local Cache Replay Overhd 0%
| = | .
=a
Analysis Resuits.
High Branch Divergence Overhead [35.1% avg, for kernels accounting for 1.9% of compute 1
@ " Divergent branches are causing significant instruction issue overhead. More.,
@ 5 Wigh mstruction Replay Overhead [46.6% ava, for kernels accounting for 39.17% of compute |
A comination of global, shared, and local plays are causing i i More..
© High Glabal Memaory Instruction Replay Overhead [45.9% avg, for kernels accounting for 39.1% of compute |
5 *® Non-coslesced global memory accesses are causing significant instruction issue overhead. More..

EES Bad aad 44

@ *diverge.vp 5

= O W Properties il Detail Graphs 51 =0
01s 01253 01ss 01753 [—
Avg: 7.048 ms
17.85 ms-[Mlg o
i [0] GeForce GTX 480 Duration
= Context 1 (CUDA) Max: 28.07 GB/s
T MemCpy (HtaD) | 17.52 GB/s
 amchy cxo Mo
& Compute [S —— DRAM Write Throughput
T 42.5% [4] Veclof32x(.
F 7.5% (4] VecLof32(int... 1 Max: 155.49 MB/S
T 7.4% [4] vecS0(int, i.. 1 [Vecsolint*. in.. | Avg: B75 MBJs
T 6.4% [4] VecThen(int* . [] 8.31 MB/s~& min: 0 Bjs
T 4.0% [4] Vec 3203215 DRAM Read Throughput
T 0.0% [4] vecEmpty() | | | g0se " MaX: 100%
= streams.
Stream 1

Aug: 35.8%

Min: 0
Giohal Memary Store Fificiency

g =0

89.682 ms
91.208 ms
91975 ms
Veclof32x(ints, int*, inte, int)| 92742 ms
vec3zof3z(ints, int+, int, int} | 100.461 ms

369.48 KB/s|
367.79KB/s

VecEmpty() | 101228 ms
VecThenfint*, int*, int*, int) | 101.233 ms
Vecso(int®, int*, int*, int) 102.757 ms

Veclof32(int*, int*, int*, int) | 103.522ms
Veclof32x(int*, int*, int*, int)| 104.287 ms

CUDA Code Profiling

e We will be using the CUDA Visual Profiler to profile a matrix addition

C=A+B

CUDA Programming w/ Thrust

CUDA Programming w/ Thrust

e Thrustis a parallel algorithms library which resembles the C++

Standard Template Library (STL):

High-level

Enhances productivity

Allows for interoperability

Helps develop high-performance applications

CUDA Programming w/ Thrust

e Remember, CUDA programs have a basic flow:
1)The host initializes an array with data.
2)The array is copied from the host to the memory on the CUDA device.
3)The CUDA device operates on the data in the array.
4)The array is copied back to the host.

e This is true for Thrust, too!

Example 2: Vector Dot Product

e Recall the dot product example from last time:
e Given vectors a and b each with size N, store the result in scalar ¢

c=ab=ab, +a,b,+...+a,b,

Purpose of the exercise: use thrust to get it done

Example 2: Vector Dot Product

e Stage 1: The host initializes the array with data, the code looked like

// Allocate host data
float *h A = (float *) malloc(size);
float *h B = (float *) malloc(size);
float *h C = (float *) malloc(size);
float *dotProd h = (float *)malloc(sizeof(float));

// Initialize the host input vectors
for (int 1 = 0; i < numElements; ++i) {
h A[i] = rand()/(float)RAND MAX;
h B[i] = rand()/(float)RAND MAX;

10

Example 2: Vector Dot Product

e Stage 1: Using Thrust, we can change the code to:

// Allocate the host vectors

thrust::host vector<float> h_A;
thrust::host vector<float> h_B;
thrust::host vector<float> h_C;

// Initialize the host input vectors

for (int 1 = 0; i < N; ++i) {
h_A.push _back(rand()/(float)RAND MAX);
h_B.push back(rand()/(float)RAND MAX);
h_C.push back(9.f);

11

Example 2:

Vector Dot Product

e Stage 2: Data copied from host to device memory; code looked like

// Allocate memory for the device data
float *d A = NULL;
float *d B = NULL;
float *d C = NULL;

float *dotProd d

cudaMalloc((void
cudaMalloc((void
cudaMalloc((void
cudaMalloc((void

// Copy the host
// to the device

= NULL;

¥)&d_A, size);
**)&d_B, size);
**)&d C, size);
**)&dotProd d, sizeof(float));

input vectors A and B in host memory
input vectors in device memory

cudaMemcpy(d_A, h_ A, size, cudaMemcpyHostToDevice);
cudaMemcpy(d B, h_ B, size, cudaMemcpyHostToDevice);

12

Example 2: Vector Dot Product

e Stage 2: Using thrust, the code can be simplified:

// Allocate the device vectors

thrust::device vector<float> d A = h_A;
thrust::device vector<float> d B = h_B;
thrust::device vector<float> d C = h _C;

e Keep in mind that what happens under the hood is the same copy of
data from the host to the device; i.e., it’s still an expensive operation

13

Example 2: Vector Dot Product

e Stage 3: The CUDA device operates on the data in the array, we
originally have the following code:

// Launch the Vector Dot Product CUDA Kernel
int threadsPerBlock = numElements;
int blocksPerGrid =(numElements + threadsPerBlock - 1) / threadsPerBlock;
vectorDot<<<blocksPerGrid, threadsPerBlock>>>(d A, d B, d C, dotProd d, numElements);

14

Example 2: Vector Dot Product

e Stage 3: Using Thrust, we can change the code to:

// compute d C = d A * d B (element-wise)
thrust::transform(

d A.begin(),

d A.end(),

d B.begin(),

d C.begin(), thrust::multiplies<float>());

// sum the values in d C and put into the variable dotProd d
double dotProd d = thrust::reduce(
d C.begin(), d C.end());

e Note that we do not need to specify the execution configuration

15

Example 2: Vector Dot Product

e Stage 4: The value is copied back to the host, code looks like:

// Copy the device result vector in device memory to the
// host result vector in host memory.

cudaMemcpy (dotProd h, dotProd d, sizeof(float), cudaMemcpyDeviceToHost);

e We can completely remove this step since thrust: :reduce(...)
copies this for us

e Thrust also cleans up after itself, no need to include free(...) or
cudaFree(...)

16

Example 2: Vector Dot Product

e To compile this code:

S nvecec dotProductThrust.cu

e To run this code:

$ gsub submit example.sh

17

18

