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CUDA Profiling
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CUDA Code Profiling

e We will be using the CUDA Visual Profiler to profile a matrix addition

C=A+B






CUDA Programming w/ Thrust




CUDA Programming w/ Thrust

e Thrustis a parallel algorithms library which resembles the C++

Standard Template Library (STL):

High-level

Enhances productivity

Allows for interoperability

Helps develop high-performance applications




CUDA Programming w/ Thrust

e Remember, CUDA programs have a basic flow:
1)The host initializes an array with data.
2)The array is copied from the host to the memory on the CUDA device.
3)The CUDA device operates on the data in the array.
4)The array is copied back to the host.

e This is true for Thrust, too!






Example 2: Vector Dot Product

e Recall the dot product example from last time:
e Given vectors a and b each with size N, store the result in scalar ¢

c=ab=ab, +a,b,+...+a,b,

Purpose of the exercise: use thrust to get it done



Example 2: Vector Dot Product

e Stage 1: The host initializes the array with data, the code looked like

// Allocate host data
float *h A = (float *) malloc(size);
float *h B = (float *) malloc(size);
float *h C = (float *) malloc(size);
float *dotProd h = (float *)malloc(sizeof(float));

// Initialize the host input vectors
for (int 1 = 0; i < numElements; ++i) {
h A[i] = rand()/(float)RAND MAX;
h B[i] = rand()/(float)RAND MAX;
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Example 2: Vector Dot Product

e Stage 1: Using Thrust, we can change the code to:

// Allocate the host vectors

thrust::host vector<float> h_A;
thrust::host vector<float> h_B;
thrust::host vector<float> h_C;

// Initialize the host input vectors

for (int 1 = 0; i < N; ++i) {
h_A.push _back(rand()/(float)RAND MAX);
h_B.push back(rand()/(float)RAND MAX);
h_C.push back(9.f);
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Example 2:

Vector Dot Product

e Stage 2: Data copied from host to device memory; code looked like

// Allocate memory for the device data
float *d A = NULL;
float *d B = NULL;
float *d C = NULL;

float *dotProd d

cudaMalloc((void
cudaMalloc((void
cudaMalloc((void
cudaMalloc((void

// Copy the host
// to the device

= NULL;

*¥*)&d_A, size);
**)&d_B, size);
**)&d C, size);
**)&dotProd d, sizeof(float));

input vectors A and B in host memory
input vectors in device memory

cudaMemcpy(d_A, h_ A, size, cudaMemcpyHostToDevice);
cudaMemcpy(d B, h_ B, size, cudaMemcpyHostToDevice);
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Example 2: Vector Dot Product

e Stage 2: Using thrust, the code can be simplified:

// Allocate the device vectors

thrust::device vector<float> d A = h_A;
thrust::device vector<float> d B = h_B;
thrust::device vector<float> d C = h _C;

e Keep in mind that what happens under the hood is the same copy of
data from the host to the device; i.e., it’s still an expensive operation
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Example 2: Vector Dot Product

e Stage 3: The CUDA device operates on the data in the array, we
originally have the following code:

// Launch the Vector Dot Product CUDA Kernel
int threadsPerBlock = numElements;
int blocksPerGrid =(numElements + threadsPerBlock - 1) / threadsPerBlock;
vectorDot<<<blocksPerGrid, threadsPerBlock>>>(d A, d B, d C, dotProd d, numElements);
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Example 2: Vector Dot Product

e Stage 3: Using Thrust, we can change the code to:

// compute d C = d A * d B (element-wise)
thrust::transform(

d A.begin(),

d A.end(),

d B.begin(),

d C.begin(), thrust::multiplies<float>());

// sum the values in d C and put into the variable dotProd d
double dotProd d = thrust::reduce(
d C.begin(), d C.end());

e Note that we do not need to specify the execution configuration
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Example 2: Vector Dot Product

e Stage 4: The value is copied back to the host, code looks like:

// Copy the device result vector in device memory to the
// host result vector in host memory.

cudaMemcpy (dotProd h, dotProd d, sizeof(float), cudaMemcpyDeviceToHost);

e We can completely remove this step since thrust: :reduce(...)
copies this for us

e Thrust also cleans up after itself, no need to include free(...) or
cudaFree(...)
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Example 2: Vector Dot Product

e To compile this code:

S nvecec dotProductThrust.cu

e To run this code:

$ gsub submit example.sh
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