
GPU Computing with CUDA

© Dan Negrut, 2012
UW-Madison

Hands-on: CUDA Profiling, Thrust

Dan Melanz & Andrew Seidl
Simulation-Based Engineering Lab

Wisconsin Applied Computing Center

Department of Mechanical Engineering

University of Wisconsin-Madison

Portland, Oregon

August 4, 2013

CUDA Profiling

2

CUDA Code Profiling

 We will be using the CUDA Visual Profiler to profile a matrix addition

problem:

C = A + B

3

4

Programming Demo #1

CUDA Programming w/ Thrust

5

CUDA Programming w/ Thrust

 Thrust is a parallel algorithms library which resembles the C++

Standard Template Library (STL):

 High-level

 Enhances productivity

 Allows for interoperability

 Helps develop high-performance applications

6

CUDA Programming w/ Thrust

 Remember, CUDA programs have a basic flow:
1)The host initializes an array with data.

2)The array is copied from the host to the memory on the CUDA device.

3)The CUDA device operates on the data in the array.

4)The array is copied back to the host.

 This is true for Thrust, too!

7

8

Dot Product Example...

Example 2: Vector Dot Product

9

 Recall the dot product example from last time:

 Given vectors a and b each with size N, store the result in scalar c

Purpose of the exercise: use thrust to get it done

1 1 2 2· N Na b a ac b b ab

Example 2: Vector Dot Product

10

 Stage 1: The host initializes the array with data, the code looked like

// Allocate host data
float *h_A = (float *) malloc(size);
float *h_B = (float *) malloc(size);
float *h_C = (float *) malloc(size);
float *dotProd_h = (float *)malloc(sizeof(float));

// Initialize the host input vectors
for (int i = 0; i < numElements; ++i) {

h_A[i] = rand()/(float)RAND_MAX;
h_B[i] = rand()/(float)RAND_MAX;

}

Example 2: Vector Dot Product

11

 Stage 1: Using Thrust, we can change the code to:

// Allocate the host vectors
thrust::host_vector<float> h_A;
thrust::host_vector<float> h_B;
thrust::host_vector<float> h_C;

// Initialize the host input vectors
for (int i = 0; i < N; ++i) {

h_A.push_back(rand()/(float)RAND_MAX);
h_B.push_back(rand()/(float)RAND_MAX);
h_C.push_back(0.f);

}

Example 2: Vector Dot Product

12

 Stage 2: Data copied from host to device memory; code looked like

// Allocate memory for the device data
float *d_A = NULL;
float *d_B = NULL;
float *d_C = NULL;
float *dotProd_d = NULL;

cudaMalloc((void **)&d_A, size);
cudaMalloc((void **)&d_B, size);
cudaMalloc((void **)&d_C, size);
cudaMalloc((void **)&dotProd_d, sizeof(float));

// Copy the host input vectors A and B in host memory
// to the device input vectors in device memory
cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice);

Example 2: Vector Dot Product

13

 Stage 2: Using thrust, the code can be simplified:

// Allocate the device vectors
thrust::device_vector<float> d_A = h_A;
thrust::device_vector<float> d_B = h_B;
thrust::device_vector<float> d_C = h_C;

 Keep in mind that what happens under the hood is the same copy of

data from the host to the device; i.e., it’s still an expensive operation

Example 2: Vector Dot Product

14

 Stage 3: The CUDA device operates on the data in the array, we

originally have the following code:

// Launch the Vector Dot Product CUDA Kernel
int threadsPerBlock = numElements;
int blocksPerGrid =(numElements + threadsPerBlock - 1) / threadsPerBlock;
vectorDot<<<blocksPerGrid, threadsPerBlock>>>(d_A, d_B, d_C, dotProd_d, numElements);

Example 2: Vector Dot Product

15

 Stage 3: Using Thrust, we can change the code to:

 Note that we do not need to specify the execution configuration

// compute d_C = d_A * d_B (element-wise)
thrust::transform(

d_A.begin(),
d_A.end(),
d_B.begin(),
d_C.begin(), thrust::multiplies<float>());

// sum the values in d_C and put into the variable dotProd_d
double dotProd_d = thrust::reduce(

d_C.begin(), d_C.end());

Example 2: Vector Dot Product

16

 Stage 4: The value is copied back to the host, code looks like:

 We can completely remove this step since thrust::reduce(...)
copies this for us

 Thrust also cleans up after itself, no need to include free(...) or

cudaFree(...)

// Copy the device result vector in device memory to the
// host result vector in host memory.
cudaMemcpy(dotProd_h, dotProd_d, sizeof(float), cudaMemcpyDeviceToHost);

Example 2: Vector Dot Product

17

 To compile this code:

$ nvcc dotProductThrust.cu

 To run this code:

$ qsub submit_example.sh

18

Programming Demo #2

