Modeling Dynamics of Biological Filaments in Continuum Limit

Anupam Mishra
Sachin Goyal
Yanbao Ma

Department of Mechanical Engineering
University of California, Merced

The 2017 Summer School on “Multibody System and Nonlinear Dynamics”
About me

• BTech. in Chemical Engineering (2012-16)
 - From IIT Guwahati
 - Computational/Experimental Fluid Dynamics

Montage photography club (https://www.facebook.com/montage.iitg/)

http://www.citiestips.com/city/GuwahatiIndia
Montage photography club (https://www.facebook.com/montage.iitg/)
About me

• Joined UC Merced in 2016
 – Water and Energy (WE Lab)
 – Bio-mechanics and Mechanobiology
Outline of the Presentation

• DPD
 – Introduction
 – Formulation
 – Results

• Rod Model
 – Introduction
 – Formulation
 – Results
Part I

Dissipative Particle Dynamics
A basic introduction to Meso-scale simulation
Multi-Scale Modeling

Based on SDSC Blue Horizon (SP3)
1.728 Tflops peak performance
CPU time = 1 week / processor

Atomistic Simulation Methods
- Ab initio methods
- Semi-empirical methods

Mesoscale methods
- Lattice Monte Carlo
- Brownian Dynamics
- Dissipative Particle Dynamics

Continuum Methods
- Monte Carlo (MC)
- Molecular Dynamics (MD)
- Tight-binding
 - MNDO, INDO/S

Time/s
- 10^0
- (ns) 10^{-9}
- (ps) 10^{-12}
- (fs) 10^{-15}

Length/m
- 10^{-10}
- 10^{-9} (nm)
- 10^{-8}
- 10^{-7}
- 10^{-6} (μm)
- 10^{-5}
- 10^{-4}

F.R. Hung, K.E. Gubbins, and S. Franzen, Chemical Engineering Education, Fall 2004
Ab-initio

- Idea: Schrödinger equation is solved numerically
- Pros:
 - Can handle bond breaking/formation process
- Cons:
 - Only small system and fast processes

Semi-empirical

- Idea: Simplified versions of equations from ab initio methods (such as only valence electron)
- Pros:
 - Can handle larger system (10^3 atoms)
 - Longer times scale
- Cons:
 - Need experimental inputs and parameter sets
 - Non-transferable
Molecular simulation

- Idea: derived force field and sample atom configuration are used
- Pros:
 - Larger system
 - Longer time scale
- Cons:
 - Lose electronic properties, reaction

Continuum Modeling

- Idea: continuous; balance and constitutive equations
- Pros:
 - Macroscopic size and time scale
- Cons:
 - Molecular origin of behavior

DPD Rod Model

UC Merced School of Engineering
Multi-Scale Modeling

Based on SDSC Blue Horizon (SP3)
1.728 Tflops peak performance
CPU time = 1 week / processor

Continuum Methods

Atomistic Simulation Methods
- Lattice Monte Carlo
- Brownian Dynamics
- Dissipative Particle Dynamics

Mesoscale methods

Semi-empirical methods
- Monte Carlo (MC)
- Molecular Dynamics (MD)

Ab initio methods
- Tight-binding
 - MNDO, INDO/S

F.R. Hung, K.E. Gubbins, and S. Franzen, Chemical Engineering Education, Fall 2004

UCMERCED | SCHOOL OF ENGINEERING
DPD(Meso Scale)

- Average out faster degree of freedom and/or treat large group of atoms as one particle
- Proposed by Hoogerbrugge and Koelman(1992) for simulating hydrodynamic behavior
- Pair forces of three types are involved
 - Conservative Force
 - Dissipative force
 - Stochastic(Random) force
Particles move according to Newton's equation of motion

\[
\frac{d\vec{r}_i}{dt} = \vec{v}_i; \quad \frac{d\vec{p}_i}{dt} = \vec{f}_i
\]

\[
\vec{r}_i \quad \text{position of particle } i
\]

\[
\vec{v}_i = \frac{\vec{p}_i}{m_i} \quad \text{velocity of particle } i
\]

\[
\vec{f}_i \quad \text{force on particle } i
\]

\[
m_i \quad \text{mass of particle } i
\]

Force is given by

\[
\vec{f}_i = \sum_{j \neq i} (\vec{f}_{ij}^C + \vec{f}_{ij}^D + \vec{f}_{ij}^R)
\]

Forces

- Conservative force comes from a simple potential with the form

\[U(r_{ij}) = a_{ij}r_c \left(1 - \frac{r_{ij}}{r_c}\right)^2 \]

\[f^C_{ij} = a_{ij} \left(1 - \frac{r_{ij}}{r_c}\right) \frac{\vec{r}_{ij}}{r_{ij}} \quad (r_{ij} < r_c) \]

\[f^C_{ij} = 0 \quad (r_{ij} \geq r_c) \]

- \(\omega_d = \left(1 - \frac{r_{ij}}{r_c}\right) \)

- Is a “repulsion” parameter
- Is an interaction cut-off range parameter

\[\vec{r}_{ij} = \vec{r}_i - \vec{r}_j; r_{ij} = |\vec{r}_{ij}| \]

Forces

• Dissipative forces is friction force that dissipates relative momentum (hence kinetic energy)

\[
\vec{f}_{ij}^{D} = -\gamma \omega_d (r_{ij}) (\hat{r}_{ij} \cdot \vec{v}_{ij}) \hat{r}_{ij}
\]

\(\vec{v}_{ij} = \vec{v}_i - \vec{v}_j\) is the relative velocity
\(\gamma\) is a friction coefficient
\(\omega_d\) is a distance dependent weight function that is zero for \(r_{ij} > r_c\)

Component of relative velocity along line of centres

Forces

• To have the correct canonical distribution, dissipative and random force are related

\[\mathbf{f}_{ij}^R = -\sigma \omega_r (r_{ij}) \theta_{ij} \hat{r}_{ij} \]

- \(\sigma \) is a fluctuation amplitude
- \(\omega_r \) is a distance dependent weight function that is zero for \(r_{ij} > r_c \)
- \(\theta_{ij} \) is a Gaussian distributed random number with zero mean and unit variance
- \(\omega_d (r_{ij}) = \left[\omega_r (r_{ij}) \right]^2 \)

• Modified velocity-verlet scheme can be defined as

\[
\begin{align*}
\vec{r}_i(t + \Delta t) &= \vec{r}_i(t) + \Delta t \vec{v}_i(t) + \frac{1}{2} \Delta t^2 \vec{f}_i(t) \\
\vec{v}'_i(t + \Delta t) &= \vec{v}_i(t) + \lambda \Delta t \vec{f}_i(t) \\
\vec{f}_i(t + \Delta t) &= \vec{f}_i(\vec{r}_i(t + \Delta t), \vec{v}_i'(t + \Delta t)) \\
\vec{v}_i(t + \Delta t) &= \vec{v}_i(t) + \frac{1}{2} \Delta t (\vec{f}_i(t) + \vec{f}_i(t + \Delta t))
\end{align*}
\]

Here \(\lambda \) is an adjustable parameter in the range 0-1.

Contact angle

• Angle measured through the liquid, where a liquid-vapor interface meets a solid interface

• Measurement techniques
 – Static Sessile drop method
 – Pendent drop method
 – Etc...

https://en.wikipedia.org/wiki/Contact_angle
Effect of curvature on contact angle

- Contact angle changes when the droplet is on a non-planer surface

Effect of curvature on contact angle
Outline of the Presentation

- **DPD**
 - Introduction
 - Formulation
 - Results

- **Rod Model**
 - Introduction
 - Formulation
 - Results
Part II

Rod Model

Modeling of biological filaments in continuum limit
Modeling Bio-filaments in Continuum Limit Rod Model

Example Simulation Outputs

DNA structure at different scales

Length Scale (m)

- 10^{-9}
- $10^{-8} - 10^{-7}$
- $10^{-7} - 10^{-5}$

[Calladine and Drew; Branden and Tooze; Nelson and Cox]
Formulation

• Characteristics in rod model
 – Deformation due to bending and
t – Inertia and dissipation
 – Self contact
 – Drag and Non homogeneity

• Two reference frame
 – Body fixed
 – Inertial
Equation of rod dynamics

Linear Momentum Equation:

\[
\frac{\partial \vec{f}}{\partial s} + \vec{K} \times \vec{f} = m \left\{ \frac{\partial \vec{v}}{\partial t} + \vec{\omega} \times \vec{v} \right\} - \vec{F}
\]

Angular Momentum Equation:

\[
\frac{\partial \vec{Q}}{\partial s} + \vec{K} \times \vec{Q} = \vec{I} \cdot \frac{\partial \vec{\omega}}{\partial t} + \vec{\omega} \times \vec{I} \cdot \vec{\omega} + \vec{f} \times \vec{r} - \vec{Q}
\]
Equation of rod dynamics

Continuity of Cross-Section:

\[
\frac{\partial \vec{\omega}}{\partial s} + \vec{\kappa} \times \vec{\omega} = \frac{\partial \vec{\kappa}}{\partial t}
\]

\[
\frac{\partial \vec{\nu}}{\partial s} + \vec{\kappa} \times \vec{\nu} = \frac{\partial \vec{r}}{\partial t} + \vec{\omega} \times \vec{r}
\]

Constitutive law

\[
\vec{q}(s,t) = \vec{f}_n(\vec{\kappa}(s,t),...)
\]
Cross section Dynamics and Constitutive Law

\[\vec{q}(s,t) = fn(\vec{\kappa}(s,t),...) \]

Restoring Torque

Curvature and Twist

\[\frac{\partial \vec{a}_i}{\partial s} = \vec{\kappa} \times \hat{a}_i \]

Cross-section fixed reference frame \(\{\hat{a}_i(s,t)\} \)
Buckling analysis of a beam

• Using forward rod model, a cantilever beam was subjected to incremental load at the free end
• Linear constitutive law has been used

Figure 5 Elastic postbuckling curves for compressed elements

http://fgg-web.ffg.uni-lj.si/~/pmoze/ESDEP/master/wg06/l0300.htm
Conclusion

- DPD (Dissipative particle Dynamics) is a stochastic simulation techniques to simulate the rheological and dynamic properties of simple and complex fluid.
- The contact angle depends on the fluid and the surface properties.
- To simulate non-linear dynamics of biological filaments, Elastic rod model is a very useful and efficient tool.
- Constitutive law is an important parameter in modeling and lack of accurate information about it is a challenge.
State of the art
Thank you
Future Direction
Roadblock in the modeling

• Constitutive law is unknown for DNA

\[\vec{q} = \vec{fn}(\vec{K},...) = ? \]

Restoring torque Curvature and twist